首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the present study is to investigate the effect of ethanolamine plasmalogens on the oxidative stability of cholesterol-rich membranes by comparing it with that of diacyl glycerophosphoethanolamine, using bovine brain ethanolamine plasmalogen (BBEP) or egg yolk phosphatidylethanolamine (EYPE)-containing large unilamellar vesicles (LUVs) and the water-soluble radical initiator AAPH. Electron microscopic observation and particle size measurement visually demonstrated that ethanolamine plasmalogens protect cholesterol-rich phospholipid bilayers from oxidative collapse. Lipid analyses suggested that the effect of ethanolamine plasmalogens in stabilizing membranes against oxidation is partly due to the antioxidative action of plasmalogens involved in scavenging radicals at vinyl ether linkage.  相似文献   

2.
To investigate the effects of ethanolamine plasmalogen, phosphatidylethanolamine, cholesterol, and alpha-tocopherol on the oxidizability of membranes, various large unilamellar vesicles (LUVs) including these lipids and antioxidant were examined for their total membrane oxidizabilities, evaluated as R(p)/R(i)(1/2) value (where R(p) is rate of oxygen consumption and R(i)(1/2) is the square root of rate of chain initiation) by the oxygen uptake method with water-soluble radical initiator and inhibitor. Incorporation of bovine brain ethanolamine plasmalogen (BBEP) into vesicles as well as cholesterol led to lower the total membrane oxidizability dose-dependently. The effect of BBEP was more efficient in the presence of cholesterol in vesicles. On the other hand, diacyl counterpart, egg yolk phosphatidylethanolamine, and a typical radical scavenger, alpha-tocopherol, had no effect on the membrane oxidizability. Alpha-tocopherol only prolonged an induction period dose-dependently in the present oxidizing system, suggesting a novel antioxidant mechanism of ethanolamine plasmalogens besides the action of scavenging radicals.  相似文献   

3.
To investigate the microscopic interactions between cholesterol and lipids in biological membranes, we have performed a series of molecular dynamics simulations of large membranes with different levels of cholesterol content. The simulations extend to 10 ns, and were performed with hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers. The bilayers contain 1024 lipids of which 0-40% were cholesterol and the rest DPPC. The effects of cholesterol on the structure and mesoscopic dynamics of the bilayer were monitored as a function of cholesterol concentration. The main effects observed are a significant ordering of the DPPC chains (as monitored by NMR type order parameters), a reduced fraction of gauche bonds, a reduced surface area per lipid, less undulations--corresponding to an increased bending modulus for the membrane, smaller area fluctuations, and a reduced lateral diffusion of DPPC-lipids as well as cholesterols.  相似文献   

4.
The number of water molecules bound (unfreezable) by a molecule of dipalmitoyl phosphatidylserine (DPPS) or by a molecule of dipalmitoyl phosphatidylcholine (DPPC) alone or in mixtures with cholesterol was determined by differential scanning calorimetry (DSC). When the phospholipids are in the gel state and in the absence of cholesterol, molecule of DPPS binds about 3.5 molecules of water and molecule of DPPC binds about 6 molecules of water. Number of water molecules bound increases when cholesterol crystallites are formed in the bilayer. For DPPS-cholesterol mixture at X(chol) -0.5, as well as for DPPC-cholesterol mixture at X(chol) -0.5 about 7 water molecules are bound.  相似文献   

5.
Properties of hydrated unsaturated phosphatidylcholine (PC) lipid bilayers containing 40 mol % cholesterol and of pure PC bilayers have been studied. Various methods were applied, including molecular dynamics simulations, self-consistent field calculations, and the pulsed field gradient nuclear magnetic resonance technique. Lipid bilayers were composed of 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules. Lateral self-diffusion coefficients of the lipids in all these bilayers, mass density distributions of atoms and atom groups with respect to the bilayer normal, the C-H and C-C bond order parameter profiles of each phospholipid hydrocarbon chain with respect to the bilayer normal were calculated. It was shown that the lateral self-diffusion coefficient of PC molecules of the lipid bilayer containing 40 mol % cholesterol is smaller than that for a corresponding pure PC bilayer; the diffusion coefficients increase with increasing the degree of unsaturation of one of the PC chains in bilayers of both types (i.e., in pure bilayers or in bilayers with cholesterol). The presence of cholesterol in a bilayer promoted the extension of saturated and polyunsaturated lipid chains. The condensing effect of cholesterol on the order parameters was more pronounced for the double C=C bonds of polyunsaturated chains than for single C-C bonds of saturated chains.  相似文献   

6.
P J Spooner  D M Small 《Biochemistry》1987,26(18):5820-5825
Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl-13C]triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentrations. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholesteryl oleate (Spooner, P. J. R., Hamilton, J. A., Gantz, D. L., & Small, D. M. (1986) Biochim. Biophys. Acta 860, 345-353]. As with cholesteryl oleate, we suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer.  相似文献   

7.
The relationship between the molecular organization of lipid headgroups and the activity of surface-acting enzyme was examined using a bacterial cholesterol oxidase (COD) as a model. The initial rate of cholesterol oxidation by COD in fluid state 1-palmitoyl-2-oleoyl-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-phosphatidylcholine/cholesterol (POPE/POPC/CHOL) bilayers was measured as a function of POPE-to-phospholipid mole ratio (X(PE)) and cholesterol-to-lipid mole ratio (X(CHOL)) at 37 degrees C. At X(PE) = 0, the COD activity changed abruptly at X(CHOL) approximately 0.40, whereas major activity peaks were detected at X(PE) approximately 0.18, 0.32, 0.50, 0.64, and 0.73 when X(CHOL) was fixed to 0.33 or 0.40. At a fixed X(CHOL) of 0.50, the COD activity increased progressively with PE content and exhibited small peaks or kinks at X(PE) approximately 0.40, 0.50, 0.58, 0.69, and 0.81. When X(PE) and X(CHOL) were systematically varied within a narrow 2-D lipid composition window, an onset of COD activity at X(CHOL) approximately 0.40 and the elimination of the activity peak at X(PE) approximately 0.64 for X(CHOL) >0.40 were clearly observed. Except for X(PE) approximately 0.40 and 0.58, the observed critical PE mole ratios agree closely (+/-0.03) with those predicted by a headgroup superlattice model (Virtanen, J.A., et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4964-4969; Cannon, B., et al. (2006) J. Phys. Chem. B 110, 6339-6350), which proposes that lipids with headgroups of different sizes tend to adopt regular, superlattice-like distributions at discrete and predictable compositions in fluid lipid bilayers. Our results indicate that headgroup superlattice domains exist in lipid bilayers and that they may play a crucial role in modulating the activity of enzymes acting on the cell membrane surface.  相似文献   

8.
Deuterium wide line NMR spectroscopy was used to study cholesterol effects on the ceramide portions of two glycosphingolipids (GSLs) distributed as minor components in fluid membranes. The common existence of very long fatty acids on GSLs was taken into account by including one glycolipid species with fatty acid chain length matching that of the host matrix, and one longer by 6 carbons. N-stearoyl and N-lignoceroyl galactosyl ceramide with perdeuterated fatty acid (18:0[d35] GalCer and 24:0[d47] GalCer) were prepared by partial synthesis. They were dispersed in bilayer membranes having the 18-carbon-fatty-acid phospholipid, 1-stearoyl-2-oleoyl-phosphatidylcholine (SOPC), as major component. Glycolipid fatty acid chain behavior and arrangement were analyzed using order profiles derived from their 2H-NMR spectra. Cholesterol effects on order parameter profiles for 18:0[d35] GalCer, with chain length equal to that of the host matrix, followed the pattern known for acyl chains of phospholipids. The presence of sterol led to restriction of trans/gauche isomerization along the length of the chain, with the largest absolute increase in order parameters being toward the surface, but somewhat greater relative effect just below the "plateau" region. In cholesterol-containing membranes, order parameter profiles for the long chain species, 24:0[d47] GalCer, showed a characteristic secondary "plateau" associated with carbon atoms C14 to C23, a feature also present in SOPC bilayers without cholesterol and in pure hydrated 24:0[d47] GalCer. Cholesterol-induced ordering effects on the long chain glycolipid were similar to those described for the shorter chain species, but were minimal at the methyl terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Lipid hydroperoxides (LOOHs) in various lipid assemblies are shown to be efficiently reduced and deactivated by phospholipid hydroperoxide glutathione peroxidase (PHGPX), the second selenoperoxidase to be identified and characterized. Coupled spectrophotometric analyses in the presence of NADPH, glutathione (GSH), glutathione reductase and Triton X-100 indicated that photochemically generated LOOHs in small unilamellar liposomes are substrates for PHGPX, but not for the classical glutathione peroxidase (GPX). PHGPX was found to be reactive with cholesterol hydroperoxides as well as phospholipid hydroperoxides. Kinetic iodometric analyses during GSH/PHGPX treatment of photoperoxidized liposomes indicated a rapid decay of total LOOH to a residual level of 35-40%; addition of Triton X-100 allowed the reaction to go to completion. The non-reactive LOOHs in intact liposomes were shown to be inaccessible groups on the inner membrane face. In the presence of iron and ascorbate, photoperoxidized liposomes underwent a burst of thiobarbituric acid-detectable lipid peroxidation which could be inhibited by prior GSH/PHGPX treatment, but not by GSH/GPX treatment. Additional experiments indicated that hydroperoxides of phosphatidylcholine, cholesterol and cholesteryl esters in low-density lipoprotein are also good substrates for PHGPX. An important role of PHGPX in cellular detoxification of a wide variety of LOOHs in membranes and internalized lipoproteins is suggested from these findings.  相似文献   

10.
Coexisting gel and liquid-crystalline phospholipid phase domains can be observed in synthetic phospholipid vesicles during the transition from one phase to the other and, in vesicles of mixed phospholipids, at intermediate temperatures between the transitions of the different phospholipids. The presence of cholesterol perturbs the dynamic properties of both phases to such an extent as to prevent the detection of coexisting phases. 6-Lauroyl-2-dimethylaminopahthalene (Laurdan) fluorescence offers the unique advantage of well resolvable spectral parameters in the two phospholipid phases that can be used for the detection and quantitation of coexisting gel and liquid-crystalline domains. From Laurdan fluorescence excitation and emission spectra, the generalized polarization spectra and values were calculated. By the generalized polarization phospholipid phase domain coexistence can be detected, and each phase can be quantitated. In the same phospholipid vesicles where without cholesterol domain coexistence can be detected, above 15 mol% and, remarkably, at physiological cholesterol concentrations, > or = 30 mol%, no separate Laurdan fluorescence signals characteristic of distinct domains can be observed. Consequences of our results on the possible size and dynamics of phospholipid phase domains and their biological relevance are discussed.  相似文献   

11.
The localization of the effects of DDT (5–50 mol%) addition on the acyl chain dynamics in unilamellar vesicles of two phosphatidylcholines (DPPC and egg PC) has been investigated by steady-state fluorescence polarization of a series of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12 and 16) whose fluorophore is located at a graded series of depths from the surface to the centre of the bilayer. The results show that DDT is a fluidizer of DPPC and egg PC bilayers. The increase in microviscosity of DPPC bilayers at 23°C begins at the centre of the bilayer (5 mol% DDT) and proceeds outward to the surface with increasing concentration of DDT (17 mol%). This pattern of effects is not evident in fluid bilayers of DPPC at 54°C or egg PC at 23°C. DDT (33 mol%) also lowers the phase transition temperature of DPPC bilayers by approximately 2 Cdeg. DDT (17 mol%) had no effect on the mean excited fluorescence life-time of 2-AP and 12-AS in DPPC, DOPC and egg PC bilayers. No quenching of 2-AP fluorescence was evident.  相似文献   

12.
13.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

14.
The spontaneous interbilayer transfer of dehydroergosterol, a fluorescent cholesterol analog, was examined using small unilamellar phospholipid vesicles. The kinetic data were best fit by an equation of the form Aexp (-kt) + B. Qualitatively, the general trend of the half-time for transfer and the base values (B) obtained for dehydroergosterol resemble the corresponding values obtained in the earlier studies of cholesterol transfer. However, quantitative differences, which reflect the molecular structure of the sterol, were observed. Acrylamide quenching performed on the donor vesicles at different stages of the transfer indicated that a time-dependent organization of DHE within the vesicles occurs.  相似文献   

15.
We have used ESR and NMR linewidth broadening by spin-labels to determine the overall orientation of spin-labeled analogues of cholesterol and androstanol in egg lecithin bilayers. While the cholesterol analogues were found to have a single orientation in each monolayer, with the acyl chain pointing towards the center of the bilayer, the androstanol analogue appeared, at least in sonicated vesicles, to experience two opposite orientations in the same monolayer, very likely with a rapid reorientation. The possibility of rapid vertical fluctuations of the sterol molecules within the phospholipid bilayer is also discussed.  相似文献   

16.
X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.  相似文献   

17.
The effect of cholesterol on phospholipid acyl chain packing in bilayers consisting of highly unsaturated acyl chains in the liquid crystalline phase was examined for a series of symmetrically and asymmetrically substituted phosphatidylcholines (PCs). The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic structural properties of bilayers containing 30 mol % cholesterol. The bilayers were composed of symmetrically substituted PCs with acyl chains of 14:0, 18:1n9, 20:4n6, or 22:6n3, containing 0, 1, 4, or 6 double bonds, respectively, and mixed-chain PCs with a saturated 16:0 sn-1 chain and 1, 4, or 6 double bonds in the sn-2 chain. DPH excited-state lifetime was fit to a Lorentzian lifetime distribution, the center of which was increased 1-2 ns by 30 mol % cholesterol relative to the cholesterol-free bilayers. Lifetime distributions were dramatically narrowed by the addition of cholesterol in all bilayers except the two consisting of dipolyunsaturated PCs. DPH anisotropy decay was interpreted in terms of the Brownian rotational diffusion model. The effect of cholesterol on both the perpendicular diffusion coefficient D perpendicular and the orientational distribution function f(theta) varied with acyl chain unsaturation. In all bilayers, except the two dipolyunsaturated PCs, 30 mol % cholesterol dramatically slowed DPH rotational motion and restricted DPH orientational freedom. The effect of cholesterol was especially diminished in di-22:6n3 PC, suggesting that this phospholipid may be particularly effective at promoting lateral domains, which are cholesterol-rich and unsaturation-rich, respectively. The results are discussed in terms of a model for lipid packing in membranes containing cholesterol and PCs with highly unsaturated acyl chains.  相似文献   

18.
Cholesterol/dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles were studied by steady-state fluorescence using diphenylhexatriene (DPH) as a probe. A series of dips were found in the plot of DPH fluorescence intensity versus cholesterol concentration at certain specific cholesterol concentrations. This observation indicates that there are dominant domains in which cholesterol molecules are regularly distributed on a hexagonal superlattice in the acyl chain matrix of DMPC at critical cholesterol concentrations. These concentrations can be predicted by an equation or a mathematical series, except the one at 33 mol %. These dips of DPH fluorescence intensity are temperature dependent. The excellent agreement between experimental data and calculated values as well as similar previous findings of dips and/or kinks in the excimer-over-monomer fluorescence in pyrenephosphatidylcholine/phospholipid mixtures confirm our conclusion about lateral organizations of cholesterol and acyl lipid chains in cholesterol/phospholipid multilamellar vesicles. The regular distribution model at critical concentration is consistent with the phase diagram of cholesterol/DMPC. Using the model of regular distribution, the physical origin of the liquid-disordered (Ld) phase, liquid-ordered phase (Lo), and coexistence of liquid-disordered phase and Lo phase (Lo + Ld) is discussed on the molecular level.  相似文献   

19.
The solubilization of biological membranes by detergents has been used as a major method for the isolation and purification of membrane proteins and other constituents. Considerable interest in this field has resulted from the finding that different components can be solubilized selectively. Certain membrane constituents are incorporated into small micelles, whereas others remain in the so-called detergent-resistant membrane domains that are large enough to be separated by centrifugation. The detergent-resistant fractions contain an elevated percentage of cholesterol, and thus its interaction with specific lipids and proteins may be key for membrane organization and regulation of cellular signaling events.This report focuses on the solubilization process induced by the sucrose monoester of myristic acid, β-d-fructofuranosyl-6-O-myristyl-α-d-glucopyranoside (MMS), a nonionic detergent. We studied the effect of the head group and the cholesterol content on the process. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and dioctadecyl-dimethyl-ammonium chloride (DODAC) vesicles were used, and the solubilization process was followed using Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) generalized polarization (GP) measurements, carried out in the cuvette and in the 2-photon microscope.Our results indicate that: (i) localization of the MMS moieties in the lipid bilayer depends on the characteristics of the lipid polar head group and influences the solubilization process. (ii) Insertion of cholesterol molecules into the lipid bilayer protects it from solubilizaton and (iii) the microscopic mechanism of solubilization by MMS implies the decrease in size of the individual liposomes.  相似文献   

20.
The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号