首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permanent sex differences in the brain are found in many vertebrates, and are thought to be induced by sex differences in secretion of gonadal steroid hormones during critical periods of early development. This theory has received support primarily from many experiments conducted on mammals, but also from studies on other vertebrate classes, including birds. The only avian neural dimorphism that has allowed extensive tests of this hypothesis is the neural circuit for song in passerine birds, which is much larger in males than in females. Experiments in zebra finches have yielded contradictory results. Although it is relatively easy to induce masculine patterns of development in genetic females with estrogen, it has not been possible to induce feminine patterns of development in males with any treatments, including antiestrogens and inhibitors of estrogen synthesis. Moreover, genetic females that develop with large amounts of functional testicular tissue but with virtually no ovarian tissue nevertheless have a feminine song circuit. The latter studies fail to support the idea of steroid induction of sexual differentiation. An alternative to the steroidal control hypothesis is that nonhormonal gene products expressed in the brain early in development trigger sexually dimorphic patterns of development. Although current evidence in several neural and nonneural systems indicates that sexual differentiation of some somatic phenotypes cannot be explained by the actions of gonadal steroids, the idea of direct genetic (nonhormonal) induction of sexual differentiation has yet to be proved. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 572–584, 1997  相似文献   

2.
Sexual differentiation of rodent brain is dependent upon hormonal exposure during a “critical period” beginning in late gestation and ending in early neonatal life. Steroid hormone action at this time results in anatomical and physiological sexual dimorphisms in adult brain, but the mechanism mediating these changes is essentially unknown. The inhibitory neurotransmitter, GABA, is involved in regulation of sexually dimorphic patterns of behavior and gonadotropin secretion in the adult. Recent evidence suggests that during development GABA is excitatory and provides critical neurotrophic and neuromodulatory influences. We hypothesized that steroid-induced changes in GABAergic neurotransmission during this critical period are important mediators of sexual differentiation in brain. Therefore, we quantified levels of mRNA for GAD, the rate-limiting enzyme in GABA synthesis. On Postnatal Day 1, males had significantly higher levels of GAD mRNA in the dorsomedial nucleus, arcuate nucleus, and CA1 region of hippocampus. On Postnatal Day 15, after the critical period for sexual differentiation has ended, these differences were no longer present. We examined the role of gonadal steroids in regulating GAD by removing testes of males and administering testosterone to females at birth. Exposure to testosterone was correlated with increased GAD mRNA in the dorsomedial nucleus. A sex difference in GAD mRNA was also observed in the medial preoptic area, but the influence of testosterone was inconclusive. We conclude that sex differences in the GABAergic system during development are partially hormonally mediated, and that these differences may contribute to the development of sexually dimorphic characteristics in adult brain.  相似文献   

3.
The mammalian brain appears to be inherently feminine and the action of testicular hormones during development is necessary for the differentiation of the masculine brain both in terms of functional potential and actual structure. Experimental evidence for this statement is reviewed in this discussion. Recent discoveries of marked structural sex differences in the central nervous system, such as the sexually dimorphic nucleus of the preoptic area in the rat, offer model systems to investigate potential mechanisms by which gonadal hormones permanently modify neuronal differentiation. Although effects of these steroids on neurogenesis and neuronal migration and specification have not been conclusively eliminated, it is currently believed, but not proven, that the principle mechanism of steroid action is to maintain neuronal survival during a period of neuronal death. The structural models of the sexual differentiation of the central nervous system also provide the opportunity to identify sex differences in neurochemical distribution. Two examples in the rat brain are presented: the distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus and of tyrosine hydroxylase-immunoreactive fibers and cells in the anteroventral periventricular nucleus. It is likely that sexual dimorphisms will be found to be characteristic of many neural and neurochemical systems. The final section of this review raises the possibility that the brain of the adult may, in response to steroid action, be morphologically plastic, and considers briefly the likelihood that the brain of the human species is also influenced during development by the hormonal environment.  相似文献   

4.
The 1959 publication of the paper by Phoenix et al. was a major turning point in the study of sexual differentiation of the brain. That study showed that sex differences in behavior, and by extension in the brain, were permanently sexually differentiated by testosterone, a testicular secretion, during an early critical period of development. The study placed the brain together in a class with other major sexually dimorphic tissues (external genitalia and genital tracts), and proposed an integrated hormonal theory of sexual differentiation for all of these non-gonadal tissues. Since 1959, the organizational–activational theory has been amended but survives as a central concept that explains many sex differences in phenotype, in diverse tissues and at all levels of analysis from the molecular to the behavioral. In the last two decades, however, sex differences have been found that are not explained by such gonadal hormonal effects, but rather because of the primary action of genes encoded on the sex chromosomes. To integrate the classic organizational and activational effects with the more recently discovered sex chromosome effects, we propose a unified theory of sexual differentiation that applies to all mammalian tissues.  相似文献   

5.
The sexual differentiation of brain and behavior is reviewed from the findings of sex differences in the vomeronasal pathway. A motivational approach to sex differences in reproductive behavior is stressed by taking into account that sex differences are present in neural networks: from the receptor organ (the vomeronasal organ) to effector nuclei. Sex differences in the brain appear in two morphological patterns. In one, the male presents greater morphological measurements than the female; in the other, the opposite occurs. These two morphological patterns are actively differentiated by gonadal steroids. The functional significance of these two morphological patterns is addressed. Moreover, since the GABAAreceptor is involved in the organization of sex differences in vomeronasal structures such as the accessory olfactory bulb and in maternal behavior, the role of membrane mechanisms, 5α reduced hormones, and neurosteroids in the sexual differentiation process is discussed.  相似文献   

6.
The formation of the testis or ovary is a critical step in development. Alterations in gonadal development during fetal or postnatal life can lead to intersexuality or infertility. Several model systems have been particularly useful in studying gonadal differentiation, the eutherian mammal and amphibia, fish, and birds. However, marsupials provide a unique opportunity to investigate gonadal development and the interactions of genes and hormones in gonadal differentiation and germ cell development in all mammals. On the one hand the genetic mechanisms appear to be identical to those in eutherian mammals, including the testis-determining SRY gene. On the other hand, marsupials retain in part the plasticity of the amphibian gonad to hormonal manipulation. It is possible to induce female to male and also male to female gonadal sex reversal in marsupials by hormonal manipulation, and oestradiol can induce male germ cells to enter meiosis at the time the oogonia do. In addition, in marsupials the development of the scrotum and mammary glands are independent of testicular androgens and instead are controlled by a gene or genes on the X-chromosome. Thus marsupials provide a number of opportunities for manipulating the sexual differentiation of the gonads that are not possible in eutherian mammals and so provide a unique perspective for understanding the common mechanisms controlling sexual development.  相似文献   

7.
The central dogma of mammalian brain sexual differentiation has contended that sex steroids of gonadal origin organize the neural circuits of the developing brain. Recent evidence has begun to challenge this idea and has suggested that, independent of the masculinizing effects of gonadal secretions, XY and XX brain cells have different patterns of gene expression that influence their differentiation and function. We have previously shown that specific differences in gene expression exist between male and female developing brains and that these differences precede the influences of gonadal hormones. Here we demonstrate that the Y chromosome-linked, male-determining gene Sry is specifically expressed in the substantia nigra of the adult male rodent in tyrosine hydroxylase-expressing neurons. Furthermore, using antisense oligodeoxynucleotides, we show that Sry downregulation in the substantia nigra causes a statistically significant decrease in tyrosine hydroxylase expression with no overall effect on neuronal numbers and that this decrease leads to motor deficits in male rats. Our studies suggest that Sry directly affects the biochemical properties of the dopaminergic neurons of the nigrostriatal system and the specific motor behaviors they control. These results demonstrate a direct male-specific effect on the brain by a gene encoded only in the male genome, without any mediation by gonadal hormones.  相似文献   

8.
Sexual dimorphism, i.e. the distinct recognition of only two sexes per species, is the phenotypic expression of a multi-stage procedure at chromosomal, gonadal, hormonal and behavioral level. Chromosomal--genetic sexual dimorphism refers to the presence of two identical (XX) or two different (XY) gonosomes in females and males, respectively. This is due to the distinct content of the X and Y-chromosomes in both genes and regulatory sequences, SRY being the key regulator Hormones (AMH, testosterone, Insl3) secreted by the foetal testis (gonadal sexual dimorphism), impede Müller duct development, masculinize Wolff duct derivatives and are involved in testicular descent (hormonal sexual dimorphism). Steroid hormone receptors detected in the nervous system, link androgens with behavioral sexual dimorphism. Furthermore, sex chromosome genes directly affect brain sexual dimorphism and this may precede gonadal differentiation.  相似文献   

9.
The activity of the Y-linked Sry gene during a critical period of gonadal differentiation is the normal trigger for testis determination and subsequent male development in mammals. This gene encodes a DNA-binding protein of the HMG-box class. It has been shown to induce a dramatic kink in target DNA-binding sites, which allows for much speculation on how the gene functions to regulate testis-specific gene expression. It is also clear that cell interactions are vital to its mode of action, and generally in the process of gonadal differentiation.  相似文献   

10.
Sex inversion as a model for the study of sex determination in vertebrates   总被引:1,自引:0,他引:1  
As a consequence of genetic sex determination, the indifferent gonadal blastema normally becomes either a testis or an ovary. This applies to mammals and to the majority of non-mammalian vertebrates. With the exception of placental mammals, however, partial or complete sex inversion can be induced in one sex by sexual steroid hormones of the opposite sex during a sensitive period of gonadogenesis. There is evidence that also during normal gonadogenesis in these species, in the XY/XX mechanism of sex determination testicular differentiation is induced by androgens, and in the ZZ/ZW mechanism, ovarian differentiation by oestrogens. In either case, the hormones may act via serological H-Y antigen as a morphogenetic factor. In contrast, in placental mammals including man, primary gonadal differentiation is independent of sexual steroid hormones, and factors directing differential gonadal development have not yet been conclusively identified. However, various mutations at the chromosome or gene level, resulting respectively in sex inversion or intersexuality, have provided clues as to some genes involved and their possible nature. In this context also, serological H-Y antigen is discussed as a possible factor acting on primordial gonadal cells and inducing differential growth or morphogenesis or both. The data available at present allow a tentative outline of the genetics of sex determination in placental mammals.  相似文献   

11.
Sexual determination and differentiation in teleost fish   总被引:3,自引:0,他引:3  
The present work reviews the latest information on the cellular, molecular and physiological aspects of sexual determination and differentiation in teleost fish. The group exhibits a large variety of mechanisms of sexual determination. These may be genetic, or depend on environmental conditions such as temperature, pH, and social factors, all of which can influence the proportion of the sexes. Additionally, sex steroids play an important role in the regulation of sexual differentiation. The patterns of gonadal sexual differentiation are diverse, and species may be hermaphroditic or gonochoristic, some of the latter displaying juvenile hermaphroditism. In recent years, several genes involved in the sexual determination and differentiation pathways in vertebrates, particularly in mammals, have also been characterized in teleosts. Conserved as well as diversified functions have been proposed.  相似文献   

12.
This special issue on steroids and glia represents the intersection of two emerging themes in the neurosciences: (a) Glia actively modulate and participate in brain function throughout life, and (b) glia are sensitive to steroid hormones. This overview begins by reviewing some of the basic principles of steroid hormone action on the brain and introducing the various glia that inhabit the peripheral and central nervous system. A prominent theme among the articles that follow is that glia may be direct targets for steroid hormones since they possess steroid receptors and the promoter region of glial-specific genes such as glutamine synthetase contain hormone-responsive elements. The articles in this special issue discuss evidence that glia may mediate steroid action on the nervous system in the context of (a) steroid metabolism, which may control the hormonal microenvironment of neurons both in the normal and injured brain; (b) brain development including sexual differentiation; (c) synaptic plasticity which may underlie the cyclic release of luteinizing hormone releasing hormone in the female rodent brain; (d) neural repair and aging; and (e) brain immune function. Another theme among these articles is that glia influence neurons via specific secreted and cell-surface molecules, and that steroids affect this mode of communication by altering the level of glial production of these signaling molecules and/or the sensitivity of neurons to such signals.  相似文献   

13.
In many species of passerine songbirds, males learn their song during defined periods of life. Female song in often reduced or absent, as are the brain regions controlling song. Sexual differences in the brain arise because of the action of sex steroids, which trigger the formation of some neural pathways (especially the pathway from the higher vocal center to the robust nucleus) and prevent the atrophy of others in males. These neural changes occur during periods of developmental song learning and can recur during periods of learning in adult birds. The process of learning is correlated with major increases or decreases in the number of neurons in specific neuronal populations, suggesting that the formation or loss of specific neural pathways regulates the ability to learn. Species differences in sexual differentiation and learning allow informative cross-species comparisons of neural structure and behavior. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
The present review explores sexual differentiation in three non-conventional species: the spotted hyena, the elephant and the tammar wallaby, selected because of the natural challenges they present for contemporary understanding of sexual differentiation. According to the prevailing view of mammalian sexual differentiation, originally proposed by Alfred Jost, secretion of androgen and anti-Mullerian hormone (AMH) by the fetal testes during critical stages of development accounts for the full range of sexually dimorphic urogenital traits observed at birth. Jost's concept was subsequently expanded to encompass sexual differentiation of the brain and behavior. Although the central focus of this review involves urogenital development, we assume that the novel mechanisms described in this article have potentially significant implications for sexual differentiation of brain and behavior, a transposition with precedent in the history of this field. Contrary to the "specific" requirements of Jost's formulation, female spotted hyenas and elephants initially develop male-type external genitalia prior to gonadal differentiation. In addition, the administration of anti-androgens to pregnant female spotted hyenas does not prevent the formation of a scrotum, pseudoscrotum, penis or penile clitoris in the offspring of treated females, although it is not yet clear whether the creation of masculine genitalia involves other steroids or whether there is a genetic mechanism bypassing a hormonal mediator. Wallabies, where sexual differentiation occurs in the pouch after birth, provide the most conclusive evidence for direct genetic control of sexual dimorphism, with the scrotum developing only in males and the pouch and mammary glands only in females, before differentiation of the gonads. The development of the pouch and mammary gland in females and the scrotum in males is controlled by genes on the X chromosome. In keeping with the "expanded" version of Jost's formulation, secretion of androgens by the fetal testes provides the best current account of a broad array of sex differences in reproductive morphology and endocrinology of the spotted hyena, and androgens are essential for development of the prostate and penis of the wallaby. But the essential circulating androgen in the male wallaby is 5alpha androstanediol, locally converted in target tissues to DHT, while in the pregnant female hyena, androstenedione, secreted by the maternal ovary, is converted by the placenta to testosterone (and estradiol) and transferred to the developing fetus. Testicular testosterone certainly seems to be responsible for the behavioral phenomenon of musth in male elephants. Both spotted hyenas and elephants display matrilineal social organization, and, in both species, female genital morphology requires feminine cooperation for successful copulation. We conclude that not all aspects of sexual differentiation have been delegated to testicular hormones in these mammals. In addition, we suggest that research on urogenital development in these non-traditional species directs attention to processes that may well be operating during the sexual differentiation of morphology and behavior in more common laboratory mammals, albeit in less dramatic fashion.  相似文献   

15.
This review focuses on research into the hormonal control of behaviors in amphibians that was conducted prior to the 21st century. Most advances in this field come from studies of a limited number of species and investigations into the hormonal mechanisms that regulate reproductive behaviors in male frogs and salamanders. From this earlier research, we highlight five main generalizations or conclusions. (1) Based on studies of vocalization behaviors in anurans, testicular androgens induce developmental changes in cartilage and muscles fibers in the larynx and thereby masculinize peripheral structures that influence the properties of advertisement calls by males. (2) Gonadal steroid hormones act to enhance reproductive behaviors in adult amphibians, but causal relationships are not as well established in amphibians as in birds and mammals. Research into the relationships between testicular androgens and male behaviors, mainly using castration/steroid treatment studies, generally supports the conclusion that androgens are necessary but not sufficient to enhance male behaviors. (3) Prolactin acts synergistically with androgens and induces reproductive development, sexual behaviors, and pheromone production. This interaction between prolactin and gonadal steroids helps to explain why androgens alone sometimes fail to stimulate amphibian behaviors. (4) Vasotocin also plays an important role and enhances specific types of behaviors in amphibians (frog calling, receptivity in female frogs, amplectic clasping in newts, and non-clasping courtship behaviors). Gonadal steroids typically act to maintain behavioral responses to vasotocin. Vasotocin modulates behavioral responses, at least in part, by acting within the brain on sensory pathways that detect sexual stimuli and on motor pathways that control behavioral responses. (5) Corticosterone acts as a potent and rapid suppressor of reproductive behaviors during periods of acute stress. These rapid stress-induced changes in behaviors use non-genomic mechanisms and membrane-associated corticosterone receptors.  相似文献   

16.
Sexual differentiation of the neural control of reproductivefunction with respect to both gonadotropin secretion and sexualbehavior is thought to result from exposure of the brain totesticular androgens during a very restricted or critical periodof CNS differentiation and development, when the tissue is competentto respond to the hormone, and after which it is refractoryor responds in a reversible manner. This paper reviews the cellularaspects of sexual differentiation with particular emphasis onthe morphological expression of the gonadal hormonal effectsin the adult brain. It presents experimental evidence for themorphogenetic basis for the observed steroid effects by showinghow the addition of steroid to undifferentiated hypothalamiccultures produces a selective neuritic response that is steroid-dependent.These results suggest that since afferent axonal input and temporalfactors are critical for dendritic and synaptic differentiation,steroid-induced variations in neuritic development could resultin gender-specific responses seen in sexual differentiationof reproductive function.  相似文献   

17.
Sex determination: a hypothesis based on steroid ratios   总被引:2,自引:0,他引:2  
This paper presents a hypothesis for sex determination based on the ratio of androgen to estrogen in the gonad during sexual differentiation. In vertebrates the ratio of these steroids, and therefore, the sex of an individual is controlled by the quantity of the enzyme aromatase. For animals with a ZZ, ZW sex determining mechanism, such as birds, in which the heterogametic sex is female, an inducer for the aromatase gene is postulated to be on the W chromosome. In animals with an XX, XY system in which the heterogametic sex is male, such as mammals, the Y chromosome is postulated to code for a repressor of the aromatase gene. This hypothesis can account for naturally occurring sex reversal such as seen in some fish and amphibians, experimentally induced sex reversal by administration of steroids in birds, reptiles, fish and amphibians, and temperature-dependent sex determination as in reptiles. For invertebrates the same hypothetical model applies though the specific androgenic and estrogenic steroids differ. Both the X-to-autosome ratio method of sex determination typified by fruit flies and the haplodiploid method of bees as well as hormonal control of sexual differentiation in crustaceans are accounted for by this hypothesis.  相似文献   

18.
In many species of passerine songbirds, males learn their song during defined periods of life. Female song is often reduced or absent, as are the brain regions controlling song. Sexual differences in the brain arise because of the action of sex steroids, which trigger the formation of some neural pathways (especially the pathway from the higher vocal center to the robust nucleus) and prevent the atrophy of others in males. These neural changes occur during periods of developmental song learning and can recur during periods of learning in adult birds. The process of learning is correlated with major increases or decreases in the numbers of neurons in specific neuronal populations, suggesting that the formation or loss of specific neural pathways regulates the ability to learn. Species differences in sexual differentiation and learning allow informative cross-species comparisons of neural structure and behavior.  相似文献   

19.
20.
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号