首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Aims: Our goal was to find a novel, biosurfactant‐producing bacterium from Pacific Ocean deep‐sea sediments. Methods and Results: An oil‐degrading biosurfactant‐producing bacterium TW53 was obtained from deep‐sea sediment, and was identified through 16S rDNA analysis as belonging to the genus Rhodococcus. It lowered the surface tension of its culture to 34·4 mN m?1. Thin layer chromatography (TLC) showed that the crude biosurfactants of TW53 were composed of lipopeptides and free fatty acids (FA). The lipopeptides were purified with column chromatography and then hydrolysed with 6 mol l?1 HCl. Gas chromatography‐mass spectrometry analysis showed that the hydrolyte in the hydrophobic fraction contained five kinds of FA with chain lengths of C14–C19, and C16H32O2 was a major component making up 59·18% of the total. However, 3‐hydroxyl FA was not found, although it is usually found in lipopeptides. Silica gel TLC revealed that the hydrolyte in the hydrophilic fraction was composed of five kinds of amino acids; consistently, ESI‐Q‐TOF‐MS analysis confirmed the composition results and provided their sequence tentatively as Ala‐Ile‐Asp‐Met‐Pro. Furthermore, the yield and CMC (critical micelle concentrations) of purified lipopeptides were examined. The purified product reduced the surface tension of water to 30·7 mN m?1 with a CMC value of 23·7 mg l?1. These results suggest that Rhodococcus sp. TW53 produces a novel lipopeptide that we have named rhodofactin. Conclusion: The deep‐sea isolate Rhodococcus sp. TW53 was the first reported lipopeptide‐producing bacterium of this genus. The lipopeptides had novel chemical compositions. Significance and Impact of the Study: Rhodococcus sp. TW53 has potential in the exploration of new biosurfactants and could be used in bioremediation of marine oil pollution.  相似文献   

2.
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg?1) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg?1) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21–72.84%, while that of the corresponding controls was only 25.85–34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.  相似文献   

3.
This study reports characterization of a biosurfactant‐producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS‐8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant‐producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m?1) with a critical micelle concentration of ≥ 1.2 mg mL?1. During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L?1 pure biosurfactant having significant emulsifying index (E24, 70%) and oil‐displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS‐8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1065–1075, 2014  相似文献   

4.
The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L?1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL?1) at 5 mg mL?1 l-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L?1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.  相似文献   

5.
Aims: To isolate and characterize the biosurfactant‐producing micro‐organism from petroleum‐contaminated soil as well as to determine the biochemical properties of the biosurfactant. Methods and Results: A novel rhamnolipid‐producing Pseudomonas aeruginosa (GenBank accession number GQ241355 ) strain was isolated from a petroleum‐contaminated soil. Surface active compound was separated by solvent extraction of the acidified culture supernatant. The extract was able to reduce the surface tension of water from 72 to 44 mN m?1 at a critical micelle concentration of 11·27 ± 1·85 mg l?1. It showed better activity (based on microdilution method) against Gram‐positive (≤ 31 mg ml?1) bacteria and filamentous fungi (≤ 50 mg ml?1) than Gram‐negative bacteria (≥ 125 mg ml?1) with mild toxicity (HC50– 38 ± 8·22 μg ml?1) to red blood cells. Fourier transform infrared spectroscopy revealed the presence of aliphatic chain, hydroxyl groups, ester and glycosidic bonds. Presence of nineteen rhamnolipid homologues with variation in chain length and saturation was revealed from liquid chromatography coupled to mass spectrometry with electrospray ionization. Conclusion: The results indicate that the isolated biosurfactant has a novel combination of rhamnolipid congeners with unique properties. Significance and Impact of the Study: This study provides a biosurfactant, which can be used as a biocontrol agent against phytopathogens (Fusarium proliferatum NCIM 1105 and Aspergillus niger NCIM 596) and exploited for biomedical applications.  相似文献   

6.
Aims: This study aimed to isolate and identify potential polycyclic aromatic hydrocarbon (PAH)‐degrading and/or metal‐tolerant fungi from PAH‐contaminated and metal‐contaminated soils. Methods and Results: Pyrene‐degrading fungi were isolated from contaminated soil and tested for metal (Cu, Zn and Pb) compound solubilization and metal accumulation. Three strains of Fusarium solani and one of Hypocrea lixii were able to degrade more than 60% of initial supplied pyrene (100 mg l?1) after 2 weeks. The isolates were grown on toxic metal (Cu, Pb and Zn)‐containing media: all isolates accumulated Cu in their mycelia to values ranging from c. 5·9 to 10·4 mmol per kg dry weight biomass. The isolates were also able to accumulate Zn (c. 3·7–7·2 mmol per kg dry weight biomass) from zinc phosphate‐amended media. None of the isolates accumulated Pb. Conclusions: These fungal isolates appear to show promise for use in bioremediation of pyrene or related xenobiotics and removal of copper and zinc from wastes contaminated singly or in combination with these substances. Significance and Impact of the Study: Microbial responses to mixed organic and inorganic pollution are seldom considered: this research highlights the abilities of certain fungal strains to interact with both xenobiotics and toxic metals and is relevant to other studies on natural attenuation and bioremediation of polluted sites.  相似文献   

7.
Li  Ziang  Cabana  Hubert  Lecka  Joanna  Brar  Satinder K.  Galvez  Rosa  Bellenger  Jean-Philippe 《Biodegradation》2021,32(5):563-576

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms. We specifically monitored the PAHs loss percentage (alkylated PAHs and unsubstituted 16 EPA Priority PAHs), the residue of PAHs and evaluated the ecotoxicity of soil after treatment. All treatments were highly efficient with more than?~?80% of ∑PAHs loss after 60 days. Distinctive loss efficiencies between light PAHs (≤?3 rings,?~?96% average loss) and heavy PAHs (4–6 rings,?~?29% average loss) were observed. The lowest average PAHs residue (0.10?±?0.02 mg·kg?1, for an initial concentration of 0.29?±?0.12 mg·kg?1) was achieved with the “sludge—plants (grasses)” combination. Sludge addition was the only treatment that achieved significantly lower ecotoxicity (3%?±?4% of growth inhibition of L. sativa) than the control (natural attenuation, 13%?±?4% of inhibition). Sludge addition, grasses plantation and “sludge—fungi combination” treatments could result in lower PAH exposure (than other treatments) in post-treated soil when using the Canadian Soil Quality Guidelines for the protection of environmental and human health for potentially carcinogenic and other PAHs.

  相似文献   

8.
A genetically engineered microorganism (GEM) capable of simultaneously degrading organophosphate and organochlorine pesticides was constructed for the first time by display of organophosphorus hydrolase (OPH) on the cell surface of a hexachlorocyclohexane (HCH)-degrading Sphingobium japonicum UT26. The GEM could potentially be used for removing the two classes of pesticides that may be present in mixtures at contaminated sites. A surface anchor system derived from the truncated ice nucleation protein (INPNC) from Pseudomonas syringae was used to target OPH onto the cell surface of UT26, reducing the potential substrate uptake limitation. The surface localization of INPNC–OPH fusion was verified by cell fractionation, western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH was demonstrated by OPH activity assays. Surface display of INPNC–OPH fusion (82 kDa) neither inhibited cell growth nor affected cell viability. The engineered UT26 could degrade parathion as well as γ-HCH rapidly in minimal salt medium. The removal of parathion and γ-HCH by engineered UT26 in sterile and non-sterile soil was also studied. In both soil samples, a mixture of parathion (100 mg kg?1) and γ-HCH (10 mg kg?1) could be degraded completely within 15 days. Soil treatment results indicated that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of multiple pesticide-contaminated environments.  相似文献   

9.
Aims: Isolation, characterization and assessment of butachlor‐degrading potential of bacterial strain JS‐1 in soil. Methods and Results: Butachlor‐degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS‐1. The strain JS‐1 exhibited substantial growth in M9 mineral salt medium supplemented with 3·2 mmol l?1 butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0·17 day?1 and half‐life (t½) of 4·0 days, following the first‐order rate kinetics. The strain JS‐1 in stationary phase of culture also produced 21·0 μg ml?1 of growth hormone indole acetic acid (IAA) in the presence of 500 μg ml?1 of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0·8 mmol l?1 were found inhibitory. Conclusions: The isolate JS‐1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. Significance and Impact of the Study: The bacterial strain JS‐1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.  相似文献   

10.
The biotransformation of heavy metals from contaminated soil was examined using a facultative anaerobic bacterium Shewanella sp. HN-41. The experiments were carried out to assess the influence of glucose at various pH on the transformation of heavy metals from soil thorough solubilization. A preliminary study on the transformation of heavy metals from soil was first performed using a defined medium supplemented with glucose at 10, 20, and 30 mM to select the effective concentration. Among the three concentrations examined, glucose at 30 mM leached a highest level of metal ions. Therefore, 30 mM glucose was used as the representative carbon source for the subsequent experiments in a defined medium at various pH (5, 6, 7, 8, and 9). The organism HN-41 was not influenced by pH ranging from acidic to neutral and was able to metabolize all the metal elements from contaminated soil. The level of Fe, Cr, As, Mn, Pb, and Al solubilization ranged from 3 to 7664 mg kg?1 at various initial pH. The rate of metal solubilization was found to be low at neutral pH compared with acidic and alkaline. These results are expected to assist in the development of heavy metal transformation processes for the decontamination of heavy metal-contaminated soil.  相似文献   

11.
Aims: To screen and identify biosurfactant producers from petroleum‐contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. Methods and Results: We successfully isolated three biosurfactant producers from petroleum‐contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth‐associated biosurfactant production by Acinetobacter sp. YC‐X 2 with an optimized medium: beef extract 3·12 g l?1; peptone 20·87 g l?1; NaCl 1·04 g l?1; and n‐hexadecane 1·86 g l?1. Biosurfactant produced by Acinetobacter sp. YC‐X 2 retained its properties during exposure to a wide range of pH values (5–11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na+ and Ca2+], which was more sensitive to Ca2+ than Na+. Conclusions: Two novel biosurfactant producers were isolated from petroleum‐contaminated soil. Biosurfactant from Acinetobacter sp. YC‐X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. Significance and Impact of the Study: The fact, an increasing demand of high‐quality surfactants and the lack of cost‐competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost‐effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface‐active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro‐organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter genus and the first report that biosurfactant may be more sensitive to Ca2+ than Na+.  相似文献   

12.
Biosurfactants are considered to facilitate PAHs dissolution in soil slurries for bioremediation applications. In this work, the carbon and nitrogen sources, pH, C/N ratio, and salinity, were considered for optimization of biosurfactant production by Pseudomonas aeruginosa SP4 isolate to enhance pyrene removal from the contaminated soil. Analysis of ANOVA indicated that the carbon source was the most effective factor, followed by pH, nitrogen source, C/N ratio, and salinity. Taguchi experimental design proposed the optimum operating conditions of olive oil, NH4NO3, C/N ratio of 5, salinity of 0.5%, and pH 7. Applying the conditions determined by Taguchi design led to a production yield of 452 mg L?1 (13% improvement) at the optimum conditions. The main characteristics of produced biosurfactant included the critical micelle concentration (CMC) of 60 mg L?1 and liquid medium surface tension of 29.5 mN m?1. Produced biosurfactant was used for bioremediation of soil artificially contaminated with 500 mg kg?1 of pyrene. Following the addition of 250 mg L?1 biosurfactant, the pyrene removal of 84.6% was obtained compared to 59.8% for control sample without any surfactant.  相似文献   

13.
菌株DLL-1降解土壤和韭菜中甲基对硫磷的研究   总被引:5,自引:4,他引:5  
施甲基对硫磷7.5、15和22.5kg·hm^-2(a.i.)时,韭菜中最终平均农药残留量为0.633、1.270和1.901mg·kg^-1,自然降解率分别为98.94%、96.44%和96.04%.施用高效农药残留降解菌剂能显著地降低农药残留的含量,施用75kg·hm^-2降解菌剂时,韭菜与土壤中平均农药残留量分别为0.269、0.099mg·kg^-1,与不施菌对照相比,能使农药进一步降低78.82%和98.68%.降解率随着菌剂用量增加而升高,当用量超过75kg·hm^-2时降解率不再提高.菌剂施用时间以施药后3d为最好.  相似文献   

14.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

15.
Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.  相似文献   

16.
A chlorpyrifos-methyl (CM) degrading bacterium (designated strain KR100) was isolated from a Korean rice paddy soil and was further tested for its sensitivity against eight commercial antibiotics. Based on morphological, biochemical, and molecular characteristics, this bacterium showed greatest similarity to members of the order Burkholderiales and was shown to be most closely related to members of the Burkholderia cepacia group. Strain KR100 hydrolyzed CM to 3,5,6-trichloro-2-pyridinol (TCP) and utilized TCP as the sole source of carbon for its growth. The isolate was also able to degrade chlorpyrifos, dimethoate, fenitrothion, malathion, and monocrotophos at 300 μg/ml but diazinon, dicrotophos, parathion, and parathion-methyl at 100 μg/ml. The ability to degrade CM was found to be encoded on a single plasmid of ~50 kb, pKR1. Genes encoding resistance to amphotericin B, polymixin B sulfate, and tetracycline were also located on the plasmid. This bacterium merits further study as a potential biological agent for the remediation of soil, water, or crop contaminated with organophosphorus compounds because of its greater biodegradation activity and its broad specificity against a range of organophosphorus insecticides.  相似文献   

17.
Aims: Isolation and characterization of nicotine‐degrading bacteria with advantages suitable for the treatment of nicotine‐contaminated water and soil and detection of their metabolites. Methods and Results: A novel nicotine‐degrading bacterial strain was isolated from tobacco field soil. Based on morphological and physiochemical properties and sequence of 16S rDNA, the isolate was identified as Pseudomonas sp., designated as CS3. The optimal culture conditions of strain CS3 for nicotine degradation were 30°C and pH 7·0. However, the strain showed broad pH adaptability with high nicotine‐degrading activity between pH 6·0 and 10·0. Strain CS3 could decompose nicotine nearly completely within 24 h in liquid culture (1000 mg L?1 nicotine) or within 72 h in soil (1000–2500 mg kg?1 nicotine) and could endure up to 4000 mg L?1 nicotine in liquid media and 5000 mg kg?1 nicotine in soil. Degradation tests in flask revealed that the strain had excellent stability and high degradation activity during the repetitive degradation processes. Additionally, three intermediates, 3‐(3,4‐dihydro‐2H‐pyrrol‐5‐yl) pyridine, 1‐methyl‐5‐(3‐pyridyl) pyrrolidine‐2‐ol and cotinine, were identified by GC/MS and NMR analyses. Conclusions: The isolate CS3 showed outstanding nicotine‐degrading characteristics such as high degradation efficiency, strong substrate endurance, broad pH adaptability, and stability and persistence in repetitive degradation processes and may serve as an excellent candidate for applications in the bioaugmentation process to treat nicotine‐contaminated water and soil. Also, detection of nicotine metabolites suggests that strain CS3 might decompose nicotine via a unique nicotine‐degradation pathway. Significance and Impact of the Study: The advantage of applying the isolated strain lies in broad pH adaptability and stability and persistence in repetitive use, the properties previously less focused in other nicotine‐degrading micro‐organisms. The strain might decompose nicotine via a nicotine‐degradation pathway different from those of other nicotine‐utilizing Pseudomonas bacteria reported earlier, another highlight in this study.  相似文献   

18.
Aims: To investigate if Burkholderia glumae can produce rhamnolipids, define a culture medium for good production yields, analyse their composition and determine their tensioactive properties. Methods and Results: Burkholderia glumae AU6208 produces a large spectrum of mono‐ and di‐rhamnolipid congeners with side chains varying between C12‐C12 and C16‐C16, the most abundant being Rha‐Rha‐C14‐C14.The effects on rhamnolipid production of the cultivation temperature, nitrogen and carbon source were investigated. With urea as the nitrogen source and canola oil as the carbon source, a production of 1000·7 mg l?1 was reached after 6 days. These rhamnolipids display a critical micelle concentration of 25–27 mg l?1 and decrease the interfacial tension against hexadecane from 40 to 1·8 mN m?1. They also have excellent emulsifying properties against long chain alkanes. Conclusions: Burkholderia glumae AU6208 can produce considerable amounts of rhamnolipids. They are produced as diversified mixtures of congeners. Their side chains are longer than those normally produced by those of Pseudomonas aeruginosa. They also present excellent tensioactive properties. Significance and Impact of the Study: In contrast with the classical rhamnolipid producer Ps. aeruginosa, B. glumae is not a pathogen to humans. This work shows that the industrial production of rhamnolipids with this species could be easier than with Ps. aeruginosa.  相似文献   

19.
Abstract

This study reports the combined use of a rhamnolipid type biosurfactant (BS) along with phytoremediation and bioaugmentation (BA) for bioremediation of hydrocarbon-contaminated soils. Bacterial isolates obtained from hydrocarbon contaminated soil were screened for rhamnolipid production and isolate BS18, identified as Shewanella seohaensis, was selected for bioremediation experiments. Growth of BS18 in mineral salt medium (MSM) with diesel oil as the carbon source showed a maximum biomass of 8.2?g L?1, rhamnolipid production of 2.2?mg g?1 cell dry weight, surface tension reduction of 28.6?mN/m and emulsification potential (EI24%) of 65.6. Characterization of rhamnolipid based on Fourier transmittance infrared (FTIR) analysis confirmed the presence of OH, CH2/CH3, C=O, and COO stretching vibrations, respectively, which are distinctive features of rhamnolipid type BSs. In bioremediation experiments, the lowest hydrocarbon concentration of 2.1?mg g?1 of soil for non-sterilized soil and 4.3?mg g?1 of soil for sterilized soil was recorded in the combined application of rhamnolipid, phytoremediation, and BA. This treatment also yielded the highest hydrocarbon degrading bacterial population (6.4 Log Cfu g?1 of soil), highest plant biomass (8.3?g dry weight plant?1), and the highest hydrocarbon uptake (512.3?mg Kg?1 of plant).  相似文献   

20.
A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号