首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factors affecting the performance of crossflow filtration were investigated with a thin-channel module and yeast cells. In crossflow filtration of Saccharomyces cerevisiae cells cultivated with YPD medium (Yeast extract, polypeptone, and dextrose) and suspended in saline, a steady state was attained within several minutes when the cell concentration was low and the circulation flow rate was high. The steady-state flux and the change in flux during the initial unsteady state were explained well by conventional filtration theory, with the amount of cake deposited and the mean specific resistance to the cake measured in a dead-end filtration apparatus used in calculation. When the circulation flow rate was lower than a critical value, a part of the channel of the crossflow filtration module was plugged with cell cake, and thus the steady-state flux was low. In crossflow filtration of suspensions of commercially available baker's yeast, the flux gradually decreased, and the flux after 8 h of filtration was lower than the value calculated by filtration theory. Fine particles contaminating the baker's yeast was responsible for the decrease. A similar phenomenon was responsible for the decrease. A similar phenomenon was observed in crossflow filtration of a broth of S. cerevisiae cells cultivated in molasses medium, which also contains such particles, had no effect of the permeation flux during crossflow filtration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Crossflow filtration of yeast broth cultivated in molasses   总被引:3,自引:0,他引:3  
A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 mum). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 mum in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 mum, but using larger pores of 3 to 5 mum it returned almost to the bases line. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
L/A controllers have extended their use from continuous to fed-batch fermentation where the control is applied from the start of an initial batch phase. As opposed to proportional integral derivative (PID) controllers where even a startup procedure is recommended prior to fed-batch, the L/A controller is not upset by an early connection. It is easily retuned continuously by means of ethanol measurements and can cope with a large range of output conditions. The performance of an L/A algorithm, which uses biomass concentration as the controlled variable, is assessed through simulation. The self-contained algorithm is relatively simple with no greater intrinsic complexity than modern PID stand alone controllers.  相似文献   

4.
Gas phase biotransformation reaction catalyzed by baker's yeast   总被引:2,自引:0,他引:2  
The gas phase continuous production of acetaldehyde from ethanol and hexanol from hexanal using dried baker's yeast was studied as an alternative approach to conventional processes. The effects of water activity, activity of substrates, and amount of yeast on the performance of the continuous bioreactor were investigated. The extent of yeast hydration and ethanol activity are the most important factors affecting yeast activity and stability.  相似文献   

5.
Abstract

Baker's yeast mediated reduction of various phenylfuran-2-yl-ethanones has been studied. The influence of the reaction conditions, the type and position of the substituents, as well the presence of various additives on the enantiomeric composition of the products and the reaction yield are discussed. The absolute configuration of the reaction products was established using a retrosynthetic procedure.  相似文献   

6.
Baker's-yeast-mediated reductions of ketones hold great potential for the industrial production of enantiopure alcohols. In this article we describe the stoichiometry and kinetics of asymmetric ketone reduction by cell suspensions of bakers' yeast (Saccharomyces cerevisiae). A system for quantitative analysis of 3-oxo ester reduction was developed and allowed construction of full mass and redox balances as well as determination of the influence of different process parameters on aerobic ketone reduction. The nature of the electron donor (ethanol or glucose) and its specific consumption rate by the biomass (0-1 mol.kg dw(-1).h(-1)) affected the overall stoichiometry and rate of the process and the final enantiomeric excess of the product. Excess glucose as the electron donor, i.e. a very high consumption rate of glucose, resulted in a high rate of alcoholic fermentation, oxygen consumption, and biomass formation and therefore causing low efficiency of glucose utilization. Controlled supply of the electron donor at the highest rates applied prevented alcoholic fermentation but still resulted in biomass formation and a high oxygen requirement, while low rates resulted in a more efficient use of the electron donor. Low supply rates of ethanol resulted in biomass decrease while low supply rates of glucose provided the most efficient strategy for electron donor provision and yielded a high enantiomeric excess of ethyl (S)-3-hydroxybutanoate. In contrast to batchwise conversions with excess glucose as the electron donor, this strategy prevented by-product formation and biomass increase, and resulted in a low oxygen requirement.  相似文献   

7.
Lipases are versatile biocatalists showing multiple applications in a wide range of biotechnological processes. The gene lipA coding for Lipase A from Bacillus subtilis was isolated by PCR amplification, cloned and expressed in Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis strains, using pBR322, YEplac112 and pUB110-derived vectors, respectively. Lipase activity analysis of the recombinant strains showed that the gene can be properly expressed in all hosts assayed, this being the first time a lipase from bacterial origin can be expressed in baker's S. cerevisiae strains. An important increase of lipase production was obtained in heterologous hosts with respect to that of parental strains, indicating that the described systems can represent a useful tool to enhance productivity of the enzyme for biotechnological applications, including the use of the lipase in bread making, or as a technological additive.  相似文献   

8.
Real-time fuzzy-knowledge-based control of Baker's yeast production   总被引:1,自引:0,他引:1  
A real-time fuzzy-knowledge-based system for fault diagnosis and control of bioprocesses was constructed using the object-oriented programming environment Small-talk/V Mac. The basic system was implemented in a Macintosh Quadra 900 computer and built to function connected on line to the process computer. Fuzzy logic was employed in handling uncertainties both in the knowledge and in measurements. The fuzzy sets defined for the process variables could be changed on-line according to process dynamics. Process knowledge was implemented in a graphical two-level hierachical knowledge base. In on-line process control the system first recognizes the current process phase on the basis of top-level rules in the knowledge-base. Then, according to the results of process diagnosis based on measurement data, the appropriate control strategy is subsequently inferred making use of the lower level rules describing the process during the phase in question. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
We report on the development of a whole-cell biocatalytic system based on the popular host Saccharomyces cerevisiae that shows programmable performance and good atom economy in the reduction of alpha-keto ester substrates. The NADPH-dependent yeast reductase background was suppressed through the combined effects of overexpression of a biosynthetic NADH-active reductase (xylose reductase from Candida tenuis) to the highest possible level and the use of anaerobic reaction conditions in the presence of an ethanol co-substrate where mainly NADH is recycled. The presented multi-level engineering approach leads to significant improvements in product optical purity along with increases in the efficiency of alpha-keto ester reduction and co-substrate yield (molar ratio of formed alpha-hydroxy ester to consumed ethanol). The corresponding alpha-hydroxy esters were obtained in useful yields (>50%) with purities of > or =99.4% enantiomeric excess. The obtained co-substrate yield reached values of greater than 1.0 with acetate as the only by-product formed.  相似文献   

10.
To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.(2) nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m(2). h) even at low membrane loadings (10 L/ft.(2)). By creating high shear rates (up to 120,000(-1)) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.(2) loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Statistical methods of optimization were applied to the stereoselective synthesis of (2S,3R)-5-phenylpent-4-en-2,3-diol mediated by baker's yeast. The quantitative effects of seven variables, i.e. pH, temperature, concentration of cinnamaldehyde, yeast and glucose, addition of pyruvate and acetaldehyde were investigated using a fractional factorial design. This approach gave informations about the chemical behaviour of the yeast. Response surface methodology was employed to describe the variability of the yield in the experimental domain.  相似文献   

12.
A methodology for the design and evalution of bioprocess control strategies is presented. The strategies manage nutrient supply with demand and vary with the metabolic condition and phase of fermentation operation. Six carbon source addition strategies are based on different combinations of available measurements; they are described and evaluated under different operating conditions for yeast cultivation. It is concluded that a single control strategy is not the most appropriate under all possible operating conditions. An oxygen uptake rate-based control strategy performs better with a mean respiratory quotient (RQ) value less than 1.1 during an oxygen limitation than an ethanol control strategy which had a mean RQ of 14. The designed strategies and an approach of applying the strategy that best matches fermentation conditions consistently enables achievement of high cell densities 78.7 g DCW/L and yields 0.50 g DCW/g glucose as the mean values for three fermentations.  相似文献   

13.
充气和搅动对球形棕囊藻生长及囊体形成的影响   总被引:1,自引:1,他引:1  
王艳  王小冬  李韶山 《生态学报》2010,30(12):3368-3374
球形棕囊藻生活史中包含游离单细胞和球形囊体两种生活形态,但是实验室中培养的球形棕囊藻经常无法形成囊体。研究通过向培养基中泵入过滤空气,以及给培养基提供不同程度的搅动,研究了充气和搅动对球形棕囊藻生长及囊体形成的影响。充气和搅动均显著提高了囊体的数量,并且提高了囊体内细胞的生长速率。但是充气对于囊体直径及囊体内细胞密度并无显著影响。搅动则明显的提高了囊体直径和囊体内细胞数量。然而,尽管充气以及搅动有利于球形棕囊藻囊体的形成,但是培养的囊体直径依然小于自然海区中囊体的大小。  相似文献   

14.
Real-time and on-line continuous monitoring of reactants, intermediates, and final products for dicarbonyl compound bioreduction in a continuous plug flow reactor packed with baker's yeast (Saccharomyces cerevisiae) whole cells immobilized on calcium alginate beads was performed by membrane introduction mass spectrometry (MIMS) via selective ion monitoring.  相似文献   

15.
The tolerance to freeze–thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze–thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze–thaw stress and retained high leavening ability in dough after frozen storage for 7 days. The final quality of bread regarding its volume and texture was also improved by using yeast cells cultured with soy peptides. These findings promote the utilization of soy peptides as ingredients of culture media to improve the quality of baker’s yeast.  相似文献   

16.
The preparation ofa cell-free homogenate and 10000 g particulate fraction with polyprenylpyrophosphate-p-hydroxybenzoate polyprenyltransferase activity from 0 to 7-day-old blocks of compressed baker's yeast is described. The synthesis of 4-carboxy-2-triprenylphenol from p-hydroxybenzoate and FPP by the particulate fraction has been studied in some detail. In particular it has been shown that the transferase catalysing the reaction is activated by Mg2+, has a pH optima of 7 and is inhibited by phosphate buffer. Intracellular distribution studies have established that in freshly grown cells of Saccharomyces carlsbergensis the greater part of the polyprenyl transferase activity is present in the mitochondria.  相似文献   

17.
The role of oxidoreductases in reduction of carbonyl compounds was investigated by application of zymogram techniques. Eight bands were observed using ethanol with nicotinamide adenine dinucleotide (NAD) as coenzyme. Bands observed with lactic acid and (R)-(-)-phenyl-1,2-ethanediol with nicotinamide adenine dinucleotide phosphate (NADP) had similar R(m) values. 2-Hydroxyvalerate and malate manifested bands having similar R(m) values and were active with both NAD and NADP. Based on their structural similarity and identical R(m) values, oxidation of 1,4-cyclooctanediol (band #2) and cis-1,5-cyclooctanediol may be due to a common enzyme. The PAGE-zymogram technique may be used on a preparative scale to facilitate purification and full characterization on the observed stained bands.  相似文献   

18.
Suzuki Y  Esumi Y  Koshino H  Ueki M  Doi Y 《Phytochemistry》2008,69(2):491-497
A short-chain poly3-hydroxybutyrate including four comonomers, originating from a complex with calcium polyphosphate, was isolated from commercial baker's yeast cells (Saccharomyces cerevisiae) and characterized as the second complexed poly(3-hydroxyalkanoate) (cPHA) in eukaryotes. The number-average molecular weight of 4982.5 Da with a polydispersity index of 1.11 was much lower than that of beet cPHA previously isolated. End-group analysis suggested that at least 60% of the molecules form the cyclic structures. Here, the organism-dependent structural diversity of cPHAs was completely established. It was also found that a change of culture medium influences the molecular weight but not the polydispersity of baker's yeast cPHA.  相似文献   

19.
20.
The use of an expanded bed of STREAMLINE Red H-7B for the purification of the intracellular glycolytic enzyme glucose 6-phosphate dehydrogenase (G6PDH) directly from untreated preparations of disrupted yeast cells has been investigated. Small-scale experiments, carried out in packed beds, have shown that the optimal pH for adsorption is 6.0 and have enabled optimization of elution conditions using a series of eluents. The dynamic capacity of the adsorbent for G6PDH was determined in a small expanded bed to be 28 units/mL. These results were used to develop a preparative scale separation of G6PDH in a STREAMLINE 50 expanded bed column. G6PDH was purified directly from an unclarified yeast homogenate in 99% yield with an average purification factor in the eluted fraction of 103. Cleaning-in-place (CIP) procedures using 0.5 M NaOH and 4M urea in 60% (v/v) ethanol have demonstrated that the adsorbent can be regenerated with no loss of adsorption capacity of alteration of bed expansion characteristics after many cycles of operation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号