首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here, we analyse the RanGTPase system and its coupling to receptor-mediated nuclear transport. Our simulations predict nuclear RanGTP levels in HeLa cells to be very sensitive towards the cellular energy charge and to exceed the cytoplasmic concentration approximately 1000-fold. The steepness of the RanGTP gradient appears limited by both the cytoplasmic RanGAP concentration and the imperfect retention of nuclear RanGTP by nuclear pore complexes (NPCs), but not by the nucleotide exchange activity of RCC1. Neither RanBP1 nor the NPC localization of RanGAP has a significant direct impact on the RanGTP gradient. NTF2-mediated import of Ran appears to be the bottleneck for maximal capacity of Ran-driven nuclear transport. We show that unidirectional nuclear transport can be faithfully simulated without the assumption of a vectorial NPC passage; transport receptors only need to reversibly cross NPCs and switch their affinity for cargo in response to the RanGTP gradient. A significant RanGTP gradient after nuclear envelope (NE) breakdown can apparently exist only in large cytoplasm. This indicates that RanGTP gradients can provide positional information for mitotic spindle and NE assembly in early embryonic cells, but hardly any in small somatic cells.  相似文献   

2.
The GTPase Ran is essential for nuclear import of proteins with a classical nuclear localization signal (NLS). Ran''s nucleotide-bound state is determined by the chromatin-bound exchange factor RCC1 generating RanGTP in the nucleus and the cytoplasmic GTPase activating protein RanGAP1 depleting RanGTP from the cytoplasm. This predicts a steep RanGTP concentration gradient across the nuclear envelope. RanGTP binding to importin-beta has previously been shown to release importin-alpha from -beta during NLS import. We show that RanGTP also induces release of the M9 signal from the second identified import receptor, transportin. The role of RanGTP distribution is further studied using three methods to collapse the RanGTP gradient. Nuclear injection of either RanGAP1, the RanGTP binding protein RanBP1 or a Ran mutant that cannot stably bind GTP. These treatments block major export and import pathways across the nuclear envelope. Different export pathways exhibit distinct sensitivities to RanGTP depletion, but all are more readily inhibited than is import of either NLS or M9 proteins, indicating that the block of export is direct rather than a secondary consequence of import inhibition. Surprisingly, nuclear export of several substrates including importin-alpha and -beta, transportin, HIV Rev and tRNA appears to require nuclear RanGTP but may not require GTP hydrolysis by Ran, suggesting that the energy for their nuclear export is supplied by another source.  相似文献   

3.
Nuclear envelope breakdown (NEBD) and release of condensed chromosomes into the cytoplasm are key events in the early stages of mitosis in metazoans. NEBD involves the disassembly of all major structural elements of the nuclear envelope, including nuclear pore complexes (NPCs), and the dispersal of nuclear membrane components. The breakdown process is facilitated by microtubules of the mitotic spindle. After NEBD, engagement of spindle microtubules with chromosome-associated kinetochores leads to chromatid segregation. Several NPC subunits relocate to kinetochores after NEBD. siRNA-mediated depletion of one of these proteins, Nup358, reveals that it is essential for kinetochore function. In the absence of Nup358, chromosome congression and segregation are severely perturbed. At the same time, the assembly of other kinetochore components is strongly inhibited, leading to aberrant kinetochore structure. The implication is that Nup358 plays an essential role in integrating NEBD with kinetochore maturation and function. Mitotic arrest associated with Nup358 depletion further suggests that mitotic checkpoint complexes may remain active at nonkinetochore sites.  相似文献   

4.
SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles   总被引:1,自引:0,他引:1  
RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1's mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1-conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.  相似文献   

5.
During prophase, vertebrate cells disassemble their nuclear envelope (NE) in the process of NE breakdown (NEBD). We have established an in vitro assay that uses mitotic Xenopus laevis egg extracts and semipermeabilized somatic cells bearing a green fluorescent protein-tagged NE marker to study the molecular requirements underlying the dynamic changes of the NE during NEBD by live microscopy. We applied our in vitro system to analyze the role of the Ran guanosine triphosphatase (GTPase) system in NEBD. Our study shows that high levels of RanGTP affect the dynamics of late steps of NEBD in vitro. Also, inhibition of RanGTP production by RanT24N blocks the dynamic rupture of nuclei, suggesting that the local generation of RanGTP around chromatin may serve as a spatial cue in NEBD. Furthermore, the microtubule-depolymerizing drug nocodazole interferes with late steps of nuclear disassembly in vitro. High resolution live cell imaging reveals that microtubules are involved in the completion of NEBD in vivo by facilitating the efficient removal of membranes from chromatin.  相似文献   

6.
Septum formation is a crucial step of cytokinesis in fungi. In the basidiomycete Ustilago maydis, the germinal centre kinase Don3 triggers initiation of a secondary septum necessary for cell separation after cytokinesis. Here we show that oligomerization of Don3 via a putative coiled-coil domain is critical for secondary septum formation. Within the Don3 sequence we detected a characteristic C-terminal sequence motif (T-motif), which determines the subcellular localization of Don3 but is not required for regulation of cell separation. This motif defines a novel family of fungal protein kinases including Sid1p, an essential component of the septation initiation network (SIN) in Schizosaccharomyces pombe. Using the yeast two-hybrid system we isolated the Don3-interacting protein Dip1, which is similar to S. pombe Cdc14p, another member of the SIN. Remarkably, deletion of dip1 did not interfere with cytokinesis in U. maydis, but both dip1 and don3 mutants were affected in nuclear envelope breakdown (NEBD) during mitosis. This phenotype has already been described for mutants, which lack the small GTPase Ras3, the U. maydis homologue of the SIN component Spg1p. We propose that the Don3 kinase exerts a dual function in the regulation of cell separation and NEBD.  相似文献   

7.
In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.  相似文献   

8.
The Polo-like kinases are key regulatory molecules required during the cell cycle for the successful completion of mitosis. We have cloned a C. elegans homolog of the Drosophila melanogaster polo gene (designated plk-1 for C. elegans polo-like kinase-1) and present the subcellular localization of the PLK-1 protein during the meiotic and mitotic cell cycles in C. elegans oocytes and embryos, respectively. Disruption of PLK-1 expression by RNA-mediated interference (RNAi) disrupts normal oocyte and embryonic development. Inspection of oocytes revealed a defect in nuclear envelope breakdown (NEBD) before ovulation. This defect in NEBD was also observed in oocytes that were depleted of the cyclin-dependent kinase NCC-1 (C. elegans homolog of Cdc2). The plk-1 RNAi oocytes were fertilized; however the resulting embryos were unable to separate their meiotic chromosomes or form and extrude polar bodies. These defects led to embryonic arrest as single cells. genesis 26:26-41, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

9.
Breaking and making of the nuclear envelope   总被引:10,自引:0,他引:10  
During mitosis, a single nucleus gives rise to two nuclei that are identical to the parent nucleus. Mitosis consists of a continuous sequence of events that must be carried out once and only once. Two such important events are the disassembly of the nuclear envelope (NE) during the first stages of mitosis, and its accurate reassembly during the last stages of mitosis. NE breakdown (NEBD) is initiated when maturation-promoting factor (MPF) enters the nucleus and starts phosphorylating nuclear pore complexes (NPCs) and nuclear lamina proteins, followed by NPC and lamina breakdown. Nuclear reassembly starts when nuclear membranes assemble onto the chromatin. This article focuses on the different models of NEBD and reassembly with emphasis on recent data.  相似文献   

10.
In animals and yeast, the small GTP-binding protein Ran has multiple functions - it is involved in mediating (i) the directional passage of proteins and RNA through the nuclear pores in interphase cells; and (ii) the formation of spindle asters, the polymerization of microtubules, and the re-assembly of the nuclear envelope in mitotic cells. Nucleotide binding of Ran is modulated by a series of accessory proteins. For instance, the hydrolysis of RanGTP requires stimulation by the RanGTPase protein RanGAP. Here we report the complementation of the yeast RanGAP mutant rna1 with Medicago sativa and Arabidopsis thaliana cDNAs encoding RanGAP-like proteins. Confocal laser microscopy of Arabidopsis plants overexpressing chimeric constructs of GFP with AtRanGAP1 and 2 demonstrated that the fusion protein is localized to patchy areas at the nuclear envelope of interphase cells. In contrast, the cellular distribution of RanGAPs in synchronized tobacco cells undergoing mitosis is characteristically different. Double-immunofluorescence shows that RanGAPs are co-localized with spindle microtubules during anaphase, with the microtubular phragmoplast and the surface of the daughter nuclei during telophase. Co-assembly of RanGAPs with tubulin correlates with these in vivo observations. The detected localization pattern is consistent with the postulated function of plant RanGAPs in the regulation of nuclear transport during interphase, and suggests a role for these proteins in the organization of the microtubular mitotic structures.  相似文献   

11.
The Ran GTPase activating protein RanGAP1 plays an essential role in nuclear transport by stimulating RanGTP hydrolysis in the cytoplasmic compartment. In mammalian cells, unmodified RanGAP1 is predominantly cytoplasmic, whereas modification by small ubiquitin-related modifier protein (SUMO) targets RanGAP1 to the cytoplasmic filaments of nuclear pore complex (NPC). Although RanGAP1 contains nine putative nuclear export signals and a nuclear localization signal, little is known if RanGAP1 shuttles between the nuclear and cytoplasmic compartments and how its primary localization in the cytoplasm and at the NPC is regulated. Here we show that inhibition of CRM1-mediated nuclear export using RNAi-knockdown of CRM1 and inactivation of CRM1 by leptomycin B (LMB) results in nuclear accumulation of RanGAP1. LMB treatment induced a more robust redistribution of RanGAP1 from the cytoplasm to the nucleoplasm compared to CRM1 RNAi and also uniquely triggered a decrease or loss of RanGAP1 localization at the NPC, suggesting that LMB treatment is more effective in inhibiting CRM1-mediated nuclear export of RanGAP1. Our time-course analysis of LMB treatment reveals that the NPC-associated RanGAP1 is much more slowly redistributed to the nucleoplasm than the cytoplasmic RanGAP1. Furthermore, LMB-induced nuclear accumulation of RanGAP1 is positively correlated with an increase in levels of SUMO-modified RanGAP1, suggesting that SUMOylation of RanGAP1 may mainly take place in the nucleoplasm. Lastly, we demonstrate that the nuclear localization signal at the C-terminus of RanGAP1 is required for its nuclear accumulation in cells treated with LMB. Taken together, our results elucidate that RanGAP1 is actively transported between the nuclear and cytoplasmic compartments, and that the cytoplasmic and NPC localization of RanGAP1 is dependent on CRM1-mediated nuclear export.  相似文献   

12.
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate spindle assembly by remaining in the GTP-bound state around the chromatin in mitosis. Here, we directly test the central tenet of this hypothesis in vivo by determining the cellular localization of Ran pathway components in Drosophila embryos. We find that, during mitosis, RCC1, the nucleotide exchange factor for Ran, is associated with chromatin, while Ran and RanL43E, an allele locked in the GTP-bound state, localize around the spindle. In contrast, nuclear proteins redistribute throughout the embryo upon nuclear envelope breakdown (NEB). Thus, in vivo RanGTP has the correct spatial localization within the cell to modulate spindle assembly.  相似文献   

13.
During meiotic nuclear envelope breakdown (NEBD) in maturing oocytes of the surf clam, Spisula solidissima, the 67-kDa lamin is extensively phosphorylated, concurrently with its solubilization. This is accompanied by a reduction of the nuclear diameter. Quercetin, a protein kinase inhibitor, does not affect lamin phosphorylation and release, nor NEBD per se, but specifically inhibits the early phosphorylation of a set of proteins, on which NEBD seems to depend. Our results suggest that meiotic NEBD in Spisula oocytes may be controlled by a mechanism which involves lamin phosphorylation, similar to that which is thought to operate in mitosis.  相似文献   

14.
We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients.  相似文献   

15.
The nuclear envelope is essential for compartmentalizing the nucleus from the cytoplasm in all eukaryotic cells. There is a tremendous flux of both RNA and proteins across the nuclear envelope, which is intact throughout the entire cell cycle of yeasts but breaks down during mitosis of animal cells. Transport across the nuclear envelope requires the recognition of cargo molecules by receptors, docking at the nuclear pore, transit through the nuclear pore, and then dissociation of the cargo from the receptor. This process depends on the RanGTPase system, transport receptors, and the nuclear pore complex. We provide an overview of the nuclear transport process, with particular emphasis on the fission yeast Schizosaccharomyces pombe, including strategies for predicting and experimentally verifying the signals that determine the sub-cellular localization of a protein of interest. We also describe a variety of reagents and experimental strategies, including the use of mutants and chemical inhibitors, to study nuclear protein import, nuclear protein export, nucleocytoplasmic protein shuttling, and mRNA export in fission yeast. The RanGTPase and its regulators also play an essential transport independent role in nuclear envelope re-assembly after mitosis in animal cells and in the maintenance of nuclear envelope integrity at mitosis in S. pombe. Several experimental strategies and reagents for studying nuclear size, nuclear shape, the localization of nuclear pores, and the integrity of the nuclear envelope in living fission yeast cells are described.  相似文献   

16.
The RanGTPase activating protein RanGAP1 has essential functions in both nucleocytoplasmic transport and mitosis. In interphase, a significant fraction of vertebrate SUMO1-modified RanGAP1 forms a stable complex with the nucleoporin RanBP2/Nup358 at nuclear pore complexes. RanBP2 not only acts in the RanGTPase cycle but also is a SUMO1 E3 ligase. Here, we show that RanGAP1 is phosphorylated on residues T409, S428, and S442. Phosphorylation occurs before nuclear envelope breakdown and is maintained throughout mitosis. Nocodazole arrest leads to quantitative phosphorylation. The M-phase kinase cyclin B/Cdk1 phosphorylates RanGAP1 efficiently in vitro, and T409 phosphorylation correlates with nuclear accumulation of cyclin B1 in vivo. We find that phosphorylated RanGAP1 remains associated with RanBP2/Nup358 and the SUMO E2-conjugating enzyme Ubc9 in mitosis, hence mitotic phosphorylation may have functional consequences for the RanGTPase cycle and/or for RanBP2-dependent sumoylation.  相似文献   

17.
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.  相似文献   

18.
In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.  相似文献   

19.
Proper mitotic progression in Schizosaccharomyces pombe requires partial nuclear envelope breakdown (NEBD) and insertion of the spindle pole body (SPB—yeast centrosome) to build the mitotic spindle. Linkage of the centromere to the SPB is vital to this process, but why that linkage is important is not well understood. Utilizing high-resolution structured illumination microscopy, we show that the conserved Sad1-UNC-84 homology-domain protein Sad1 and other SPB proteins redistribute during mitosis to form a ring complex around SPBs, which is a precursor for localized NEBD and spindle formation. Although the Polo kinase Plo1 is not necessary for Sad1 redistribution, it localizes to the SPB region connected to the centromere, and its activity is vital for redistribution of other SPB ring proteins and for complete NEBD at the SPB to allow for SPB insertion. Our results lead to a model in which centromere linkage to the SPB drives redistribution of Sad1 and Plo1 activation that in turn facilitate partial NEBD and spindle formation through building of a SPB ring structure.  相似文献   

20.
The small Ras-like GTPase Ran plays an essential role in the transport of macromolecules in and out of the nucleus and has been implicated in spindle (1,2 ) and nuclear envelope formation (3,4 ) during mitosis in higher eukaryotes. We identified Saccharomyces cerevisiae open reading frame YGL164c encoding a novel RanGTP-binding protein, termed Yrb30p. The protein competes with yeast RanBP1 (Yrb1p) for binding to the GTP-bound form of yeast Ran (Gsp1p) and is, like Yrb1p, able to form trimeric complexes with RanGTP and some of the karyopherins. In contrast to Yrb1p, Yrb30p does not coactivate but inhibits RanGAP1(Rna1p)-mediated GTP hydrolysis on Ran, like the karyopherins. At steady state, Yrb30p localizes exclusively to the cytoplasm, but the presence of a functional nuclear export signal and the localization of truncated forms of Yrb30p suggest that the protein shuttles between nucleus and cytoplasm and is exported via two alternative pathways, dependent on the nuclear export receptor Xpo1p/Crm1p and on RanGTP binding. Whereas overproduction of the full-length protein and complete deletion of the open reading frame reveal no obvious phenotype, overproduction of C-terminally truncated forms of the protein inhibits yeast vegetative growth. Based on these results and the exclusive conservation of the protein in the fungal kingdom, we hypothesize that Yrb30p represents a novel modulator of the Ran GTPase switch related to fungal lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号