首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shaping and bending of the neural plate are cardinal events of neurulation. These processes are initiated in avian embryos shortly after the onset of gastrulation and concluded concomitantly with the completion of gastrulation. The epiblast undergoes extensive morphogenetic movements during gastrulation and neurulation, but the directions, distances, rates, mechanisms and roles of such rearrangements are largely unknown. To begin to understand these morphogenetic movements, we have mapped regional displacements of the epiblast by injecting a fluorescent-histochemical marker into selected prenodal, nodal and postnodal levels of the blastoderm. Lateral epiblast regions (600 microns lateral to the midline and consisting primarily of surface epithelium) are displaced craniomedially, medial regions (300 microns lateral to the midline and consisting of neural plate and preingressed mesoderm) predominantly medially, and midline regions (consisting of neural plate and primitive streak) predominantly caudally. Displacements within the avian neural plate parallel those previously described for the amphibian neural plate. Furthermore, similar tissue displacements occur within the prenodal and postnodal levels of the avian epiblast despite the fact that neurulation is occurring in the former and gastrulation in the latter. Finally, our results show that ectodermal rudiments contained within a single cross-sectional level of the embryo are a composite of cells derived from multiple craniocaudal and mediolateral levels. Thus, regional tissue displacements are important events to consider in the analysis of the early morphogenesis of axial and paraxial organ rudiments derived from the epiblast.  相似文献   

2.
How control of subcellular events in single cells determines morphogenesis on the scale of the tissue is largely unresolved. The stereotyped cross-midline mitoses of progenitors in the zebrafish neural keel provide a unique experimental paradigm for defining the role and control of single-cell orientation for tissue-level morphogenesis in vivo. We show here that the coordinated orientation of individual progenitor cell division in the neural keel is the cellular determinant required for morphogenesis into a neural tube epithelium with a single straight lumen. We find that Scribble is required for oriented cell division and that its function in this process is independent of canonical apicobasal and planar polarity pathways. We identify a role for Scribble in controlling clustering of α-catenin foci in dividing progenitors. Loss of either Scrib or N-cadherin results in abnormally oriented mitoses, reduced cross-midline cell divisions, and similar neural tube defects. We propose that Scribble-dependent nascent cell-cell adhesion clusters between neuroepithelial progenitors contribute to define orientation of their cell division. Finally, our data demonstrate that while oriented mitoses of individual cells determine neural tube architecture, the tissue can in turn feed back on its constituent cells to define their polarization and cell division orientation to ensure robust tissue morphogenesis.  相似文献   

3.
Coordination of morphogenesis and cell proliferation is essential during development. In Xenopus, cell divisions are rapid and synchronous early in development but then slow and become spatially restricted during gastrulation and neurulation. One tissue that transiently stops dividing is the paraxial mesoderm, a dynamically mobile tissue that forms the somites and body musculature of the embryo. We have found that cessation of cell proliferation is required for the proper positioning and segmentation of the paraxial mesoderm as well as the complete elongation of the Xenopus embryo. Instrumental in this cell cycle arrest is Wee2, a Cdk inhibitory kinase that is expressed in the paraxial mesoderm from mid-gastrula stages onwards. Morpholino-mediated depletion of Wee2 increases the mitotic index of the paraxial mesoderm and this results in the failure of convergent extension and somitogenesis in this tissue. Similar defects are observed if the cell cycle is inappropriately advanced by other mechanisms. Thus, the low mitotic index of the paraxial mesoderm plays an essential function in the integrated cell movements and patterning of this tissue.  相似文献   

4.
Ultraviolet irradiation of the vegetal hemisphere of the fertilized amphibian (Xenopus laevis) egg prior to first cleavage results in the embryo developing an incomplete set of neural structures. The effects of irradiation on various morphogenetic processes, including cell division, formation of the dorsal lip, invagination at gastrulation, and neural induction by the primary organizer, were examined. A decrease in the capacity for invagination during gastrulation and a diminution in the neural inducing capacity of the primary organizer were found to account for defective neurulation in irradiated embryos. Consequently, irradiation of the uncleaved egg leads to interference with the events of both gastrulation and neurulation.  相似文献   

5.
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror‐symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.  相似文献   

6.
We describe the lineage and morphogenesis of neural plate cells in the ascidian, Ciona intestinalis, from reconstructed cell maps of embryos at 12-min intervals during and after neurulation, between 31 and 61% of embryonic development. Neurulation commences in a posterior to anterior wave following in the wake of the ninth cleavage, when all cells, except possibly four, are in their 10th generation. The neural plate then comprises 76 cells, in up to four posterior rows each of eight vegetal-hemisphere cells, and eight anterior rows each of six animal-hemisphere cells. Two cells are lost from the neural plate to the muscle cell line during neurulation and four cells are gained from ectoderm outside the plate. All cells become wedge-shaped. Simple, stereotyped positional changes transform cells from lateral locations in the plate to posterior locations in the tube; bilateral partners shear their midline positions to form the keel, and ectodermal cells zipper up dorsally to form the capstone, of a tube which is four cells in cross section posteriorly, but more complex anteriorly. Neither cell death nor migration occur during neurulation. Divisions become asynchronous and the cell-cycle extends; 170 10th- to 12th-generation cells exist by the time the neural tube becomes completely internalized. Generally, only one further division is required to complete the lineage analysis, two at the most. Neural plate cell divisions were invariant using our observational methods, and their lineage is compared with that from recent studies of H. Nishida (1987, Dev. Biol. 121, 526-541).  相似文献   

7.
Orientation of cell division is a vital aspect of tissue morphogenesis and growth. Asymmetric divisions generate cell fate diversity and epithelial stratification, whereas symmetric divisions contribute to tissue growth, spreading, and elongation. Here, we describe a mechanism for positioning the spindle in symmetric cell divisions of an embryonic epithelium. We show that during the early stages of epiboly, spindles in the epithelium display dynamic behavior within the plane of the epithelium but are kept firmly within this plane to give a symmetric division. This dynamic stability relies on balancing counteracting forces: an apically directed force exerted by F-actin/myosin-2 via active cortical flow and a basally directed force mediated by microtubules and myosin-10. When both forces are disrupted, spindle orientation deviates from the epithelial plane, and epithelial surface is reduced. We propose that this dynamic mechanism maintains symmetric divisions while allowing the quick adjustment of division plane to facilitate even tissue spreading.  相似文献   

8.
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.  相似文献   

9.
The product of the Drosophila gene tribbles inhibits cell division in the ventral furrow of the embryo and thereby allows the normal prosecution of gastrulation. Cell division is also absent in involuting dorsal mesoderm during gastrulation in Xenopus, and to ask whether the two species employ similar mechanisms to coordinate morphogenesis and the cell cycle, we isolated a putative Xenopus homologue of tribbles which we call Xtrb2. Extensive cDNA cloning identified long and short forms of Xtrb2, termed Xtrb2-L and Xtrb2-S, respectively. Xtrb2 is expressed maternally and in mesoderm and ectoderm at blastula and gastrula stages. Later, it is expressed in dorsal neural tube, eyes, and cephalic neural crest. Time-lapse imaging of GFP-tagged Xtrb2-L suggests that during cell division, it is associated with mitotic spindles. Knockdown of Xtrb2 by antisense morpholino oligonucleotides (MOs) disrupted synchronous cell divisions during blastula stages, apparently as a result of delayed progression through mitosis and cytokinesis. At later stages, tissues expressing the highest levels of Xtrb2 were most markedly affected by morpholino knockdown, with perturbation of neural crest and eye development.  相似文献   

10.
We examined the spatial relationships between the meridian of sperm entry the plane of first cleavage, and the embryonic axis (defined by the neural groove) in eggs of Xenopus laevis. Direct measurement of the angular separations between these embryonic structures in gelatin-embedded eggs confirmed the classical conclusion that the sperm entry point and neural groove tend to form on opposite sides of the egg, and also revealed that the first cleavage plane has a nearly random orientation with respect to the neural groove. We next examined the distortion of the first cleavage plane that results from the normal processes of convergence and extension during gastrulation and neurulation. We permanently marked the first cleavage plane by injecting one blastomere of the two-cell embryo with a fluorescent lineage marker. At the start of gastrulation, the interface between the labeled and unlabeled regions was almost randomly oriented relative to the dorsal blastopore lip, confirming our first set of observations. In embryos with the interface less than 60 degrees to the plane passing through the midline of the dorsal lip, convergent movements of cells produced a confrontation of labeled and unlabeled cells along much of the dorsal midline. Thus, although the first cleavage plane and the bilateral plane were frequently not congruent, the morphogenetic movements of gastrulation and neurulation brought about an apparent congruence in many half-labeled embryos.  相似文献   

11.
12.
The values of cell wall tensions were calculated with an assumption of mechanical equilibrium of every cell apex on schematic diagrams of histological sections of the common frog embryonic tissues. The maps of the main (the strongest) tensions were drawn for the early gastrula and early neurula. The further course of gastrulation and neurulation was simulated with an assumption that the cell apices are displaced due to active contractions of the most tensed cell walls (variant A of the model). In addition, a suggestion was studied that the capacity for contraction falls in the most extended cell walls (variant B). Up to seven steps of model morphogenesis were simulated and the tension field was recalculated at every step. The course of gastrulation and neurulation was reproduced during simulation with sufficient details, including regional peculiarities of neurulation in the trunk and head regions. Both variants gave roughly similar results for gastrulation, whereas variant B ensured a faster course of model morphogenesis for neurulation. A conclusion was drawn that the mechanical tension fields established by the onset of gastrulation and neurulation represent a sufficient informational base for their further course.  相似文献   

13.
During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell–cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin‐1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin‐1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin‐1 results in delayed neural fold apposition and neural tube closure. We further show that netrin‐1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin‐RGMa interactions, neogenin‐netrin‐1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin‐1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure. © 2012 Wiley Periodicals, Inc., 2013  相似文献   

14.
During vertebrate development, the hindbrain is transiently segmented into 7 distinct rhombomeres (r). Hindbrain segmentation takes place within the context of the complex morphogenesis required for neurulation, which in zebrafish involves a characteristic cross-midline division that distributes progenitor cells bilaterally in the forming neural tube. The Eph receptor tyrosine kinase EphA4 and the membrane-bound Ephrin (Efn) ligand EfnB2a, which are expressed in complementary segments in the early hindbrain, are required for rhombomere boundary formation. We showed previously that EphA4 promotes cell-cell affinity within r3 and r5, and proposed that preferential adhesion within rhombomeres contributes to boundary formation. Here we show that EfnB2a is similarly required in r4 for normal cell affinity and that EphA4 and EfnB2a regulate cell affinity independently within their respective rhombomeres. Live imaging of cell sorting in mosaic embryos shows that both proteins function during cross-midline cell divisions in the hindbrain neural keel. Consistent with this, mosaic EfnB2a over-expression causes widespread cell sorting and disrupts hindbrain organization, but only if induced at or before neural keel stage. We propose a model in which Eph and Efn-dependent cell affinity within rhombomeres serve to maintain rhombomere organization during the potentially disruptive process of teleost neurulation.  相似文献   

15.
BACKGROUND: The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS: We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS: Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates.  相似文献   

16.
17.
The central nervous system is derived from the neural plate that undergoes a series of complex morphogenetic movements resulting in formation of the neural tube in a process known as neurulation. During neurulation, morphogenesis of the mesenchyme that underlies the neural plate is believed to drive neural fold elevation. The cranial mesenchyme is comprised of the paraxial mesoderm and neural crest cells. The cells of the cranial mesenchyme form a pourous meshwork composed of stellate shaped cells and intermingling extracellular matrix (ECM) strands that support the neural folds. During neurulation, the cranial mesenchyme undergoes stereotypical rearrangements resulting in its expansion and these movements are believed to provide a driving force for neural fold elevation. However, the pathways and cellular behaviors that drive cranial mesenchyme morphogenesis remain poorly studied. Interactions between the ECM and the cells of the cranial mesenchyme underly these cell behaviors. Here we describe a simple ex vivo explant assay devised to characterize the behaviors of these cells. This assay is amendable to pharmacological manipulations to dissect the signaling pathways involved and live imaging analyses to further characterize the behavior of these cells. We present a representative experiment demonstrating the utility of this assay in characterizing the migratory properties of the cranial mesenchyme on a variety of ECM components.  相似文献   

18.
Cell division cycle of cultured neural precursor cells from Drosophila   总被引:1,自引:0,他引:1  
In Drosophila neuroblast cells, which give rise to the embryonic nervous system, undergo a limited number of asymmetric cell divisions. These cell lineages result in the formation of clusters of neurons when neuroblasts are isolated and cultured. A significant proportion of these neural cell clusters (NCC) arise from individual precursor cells. The formation of NCC containing more than two neurons is repressed when DNA synthesis is inhibited. Cell division during NCC development was examined by [3H]thymidine autoradiography. The pattern of DNA synthesis by neural cells was that expected based on observations in situ. The pattern in individual NCC was consistent with single precursor origins for more than 80% of NCC, under our conditions of culture. Based on this, we show that the largest neural precursors at gastrulation undergo the most cell divisions in culture. The neuroblast cell division cycle averages approximately 1.5 hr, and is similar to that of blastoderm cells.  相似文献   

19.
The orientation of cell divisions determines the shape of Drosophila organs   总被引:6,自引:0,他引:6  
Organ shape depends on the coordination between cell proliferation and the spatial arrangement of cells during development. Much is known about the mechanisms that regulate cell proliferation, but the processes by which the cells are orderly distributed remain unknown. This can be accomplished either by random division of cells that later migrate locally to new positions (cell allocation) or through polarized cell division (oriented cell division; OCD). Recent data suggest that the OCD is involved in some morphogenetic processes such as vertebrate gastrulation, neural tube closure, and growth of shoot apex in plants; however, little is known about the contribution of OCD during organogenesis. We have analyzed the orientation patterns of cell division throughout the development of wild-type and mutant imaginal discs of Drosophila. Our results show a causal relationship between the orientation of cell divisions in the imaginal disc and the adult morphology of the corresponding organs, indicating a key role of OCD in organ-shape definition. In addition, we find that a subset of planar cell polarity genes is required for the proper orientation of cell division during organ development.  相似文献   

20.
We make use of a novel system of explant culture and high resolution video-film recording to analyse for the first time the cell behaviour underlying convergent extension and segmentation in the somitic mesoderm of Xenopus. We find that a sequence of activities sweeps through the somitic mesoderm from anterior to posterior during gastrulation and neurulation, beginning with radial cell intercalation or thinning, continuing with mediolateral intercalation and cell elongation, and culminating in segmentation and somite rotation. Radial intercalation at the posterior tip lengthens the tissue, while mediolateral intercalation farther anterior converges it toward the midline. This extension of the somitic mesoderm helps to elongate the dorsal side of intact neurulae. By separating tissues, we demonstrate that cell rearrangement is independent of the notochord, but radial intercalation - and thus the bulk of extension - requires the presence of an epithelium, either endodermal or ectodermal. Segmentation, on the other hand, can proceed in somitic mesoderm isolated at the end of gastrulation. Finally, we discuss the relationship between cell rearrangement and segmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号