首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoreactive urinary oestrogen conjugates were assessed in daily urine samples (approximately 5 samples/week) collected from 8 Przewalski's mares maintained under semi-free-ranging pasture conditions. The relative percentage contributions of immunoreactive urinary oestrogens during different reproductive stages (oestrus, luteal phase, early, mid- and late gestation) were determined using high-pressure liquid chromatography. In general, conjugated forms of oestrone (oestrone sulphate and oestrone glucuronide) were the major excreted immunoreactive oestrogens in nonpregnant and pregnant Przewalski's mares. Variations in urinary oestrogen conjugates indicated that the onset of oestrous cyclicity coincided with increasing daylengths, and the non-conception oestrous cycle was 24.1 +/- 0.7 days (n = 17) in duration. Most copulations (29/35, 82.9%) were observed between Day -4 and Day +1 from the preovulatory oestrogen conjugates peak (Day 0). Based on known copulation dates, the mean gestation length was 48.6 +/- 0.4 weeks (range 47.3-50.3 weeks). During pregnancy, urinary excretion of oestrogen conjugates increased approximately 300-fold over levels in non-pregnant mares, reaching peak concentrations by Week +24 (51% of gestation). These results demonstrate that longitudinal reproductive events, including oestrous cyclicity and pregnancy, can be monitored precisely by evaluating urinary oestrogen conjugates in samples from Przewalski's mares maintained under semi-free-ranging conditions.  相似文献   

2.
Oestrogen secretion was determined by oestrogen conjugate (EC) analysis of urine in three groups of pregnant mares: Group I (N = 6), animals ovariectomized on Day 18-19 of gestation with pregnancy maintained by daily administration of an oral progestagen, altrenogest; Group II (N = 9), untreated, pregnant mares; Group III (N = 5) intact, pregnant mares treated daily with altrenogest. The mean EC concentrations in the ovariectomized mares in Group I increased in a constant linear manner from 17 ng/mg Cr on Day 20 to 291 ng/mg Cr on Day 70, with no apparent surge in oestrogen secretion around Day 39. Mean EC concentrations on Days 33, 39 and 44 were respectively 41, 48, and 73 ng/mg Cr. In the intact mares in Groups II and III (shown in parentheses), the mean urinary EC concentrations were 201 (171) ng/mg Cr between Days 20 and 33 of gestation, increased rapidly from 172 (77) ng/mg Cr on Day 33 to a peak of 1066 (895) ng/mg Cr on Day 39, followed by a decline to 637 (719) ng/mg Cr on Day 44. After Day 44, EC concentrations continued to increase in a linear manner to 1191 (842) ng/mg Cr on Day 70. The mean EC concentrations between Days 20 and 70 in Group I were significantly (P less than 0.05) lower than in mares in Groups II and III. EC concentrations in Group III mares were significantly lower (P less than 0.05) than in Group II mares between Days 28 and 34.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Blood and urine samples collected from 12 mares at frequent intervals from 25 to 210 d of pregnancy were analyzed for equine chorionic gonadotropin (eCG). Blood and urine samples were collected daily through two consecutive ovulatory periods from five cyclic mares for comparative purposes. Separate radioimmunoassays (RIA) were developed to detect eCG in the urine and plasma. A simple and quick commercial dipstick enzyme-linked immunospecific assay (ELISA), developed for eCG in the blood, was also utilized in this study to detect eCG in the urine. In the 12 pregnant mares, eCG concentrations in both the plasma and urine as detected by RIA rose significantly on Day 40, peaked by Day 60 and slowly dropped to low levels by Day 200. The dipstick ELISA appeared more reliable for eCG in the plasma than in the urine of the five pregnant mares tested. However, on peak days (50 to 60), both the plasma and urine tested positive in all five mares. Similar eCG profiles were observed when urine samples from seven of the mares were assayed in the dipstick ELISA and RIA. The highest percentage of mares (86%) were positive for eCG by ELISA between Days 65 and 85. The highest concentration of eCG in the urine as detected by RIA was observed between Days 55 and 90. ECG-like immunoactivity was not detected by the ELISA in the urine of cyclic mares, but the RIA showed variable patterns with increases in immunoactivity that could not be correlated with physiological events. In summary, eCG in urine follows a similar profile as the eCG in plasma of mares during their first trimester of pregnancy.  相似文献   

4.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

5.
The purpose of the present study was to evaluate the change in cross-sectional area of the early corpus luteum (CL) and progesterone production in relation to subsequent pregnancy diagnosis. The cross-sectional area of the CL of 75 Friesian brood mares was measured by ultrasonography on Day 1 or 2 and Day 8 or 9 after ovulation. The change in cross-sectional area was expressed in a volume ratio. Plasma progesterone concentrations were measured on Days 8 to 9, and ultrasonography to determine pregnancy status was carried out on Day 17. The data obtained were analyzed by using a multiple logistic regression model. There were significant differences in the age, volume ratio and progesterone concentration between pregnant and nonpregnant mares. Pregnancy on Day 17 was related to the change in size of the CL up to Days 8 to 9 and progesterone concentration on Days 8 to 9. These differences between pregnant and nonpregnant mares might reflect the first luteal response to pregnancy.  相似文献   

6.
The objective of this study was to test the hypothesis that intrauterine administration of prostaglandin E(2) (PGE(2)) or estradiol-17beta (E-17beta) would prolong CL function in nonpregnant mares. Nonpregnant mares were continuously infused with 240 mug/d of PGE(2), 6 mug/d of E-17beta, or vehicle (sham-treated) on Days 10 to 16 post ovulation (ovulation = Day 0), using osmotic minipumps surgically placed into the uterine lumen on Day 10 (n = 11 per group). Nonpregnant and pregnant mares served as negative and positive controls, respectively (n = 11 per group). Mares were defined as having prolonged CL function if plasma progesterone remained > 2.5 ng/ml and if ovulation did not occur on Days 9 to 30. Corpus luteal function was prolonged until Day 30 in 1 11 nonpregnant mares, 4 11 sham-treated mares, 6 11 E-17beta-treated mares, 8 11 PGE(2)-treated mares, and 11 11 pregnant mares. The incidence of prolonged CL function was similar (P=0.16) in the sham-treated and nonpregnant mares. The hypothesis that PGE(2) would prolong CL function in nonpregnant mares was supported, since the incidence of prolonged CL function was higher (P=0.003) in PGE(2)-treated versus nonpregnant mares, tended to be higher (P=0.09) in PGE(2)-versus sham-treated mares, and was not lower (P=0.11) in PGE(2)-treated versus pregnant mares. The hypothesis that E-17beta would prolong CL function in nonpregnant mares was not supported, since the incidence of prolonged CL function was not higher (P=0.34) in E-17beta-versus sham-treated mares, and was lower (P=0.02) in E-17beta-treated versus pregnant mares. These results demonstrate that intrauterine administration of a pharmacologic dose of PGE(2) initiated prolonged CL function in nonpregnant mares. Further experiments are needed to confirm the role of conceptus secretion of PGE(2) in CL maintenance, and to determine the mechanism of action of PGE(2) within the equine reproductive tract.  相似文献   

7.
Daily injections of 150 units oxytocin administered to 6 mares on Days 4, 5, 6, 7 and 8 after ovulation (Day 0 = ovulation) failed to induced luteolysis as indicated by the maintenance of normal plasma progestagen concentrations and the occurrence of normal ovulatory intervals. Three additional mares were given oestrogen injections 24 h before an injection of oxytocin on Day 7 after ovulation, but this treatment also failed to induce luteolysis since plasma progestagen concentrations were maintained in all three mares. Two mares exhibited normal ovulatory intervals, while the third developed a corpus luteum which persisted for 46 days.  相似文献   

8.
Progesterone (P(4)) concentrations in the horse mare have conventionally been measured by radioimmunoassay (RIA). A commercial quantitative, competitive enzymelinked immunoassay (CELISA) has been recently introduced to the horse breeding industry along with a qualitative CELISA. The objectives of this study were to evaluate these two assays for their ability to detect transitional, cyclic, and pregnancy stages as well as early embryonic death in horse mares. The quantitative CELISA demonstrated a significant difference in P(4) levels during estrus and at Day 24 of pregnancy. There was a significant difference in P(4) concentrations in mares at ovulation and at Days 17 to 18 of pregnancy. However, there was no significant difference between pregnant and nonpregnant P(4) values from Day 1 until Day 16 of pregnancy. There was a significant difference in P(4) concentrations at ovulation and at the peak of the luteal phase in nonpregnant mares. There was also a significant difference between mares in the transitional period and Day 16 pregnant mares. The intraassay coefficient of variation was 3.1%, while the interassay coefficient of variation was 6.2%. The qualitative CELISA provided true positive diagnoses of 76.5% of the time, true negatives 67.3% of the time, false positives 4.1% of the time, and false negatives 3.1% of the time. The test sensitivity was 89.3% and its specificity was 95.7%. The CELISA provided 93% valid positive diagnoses of pregnancy on Day 21, 99% on Day 26, and 100% on Day 30. The use of either of these assay systems will provide a useful adjunct to any breeding program that utilizes one or more of the currently accepted diagnostic techniques, including teasing, palpation, and ultrasound. These assays introduce a new, inexpensive method of confirming the reproductive status in the mare.  相似文献   

9.
The effect of pregnancy on concentrations of prostaglandins E2, F2 alpha and 6-keto-prostaglandin F1 alpha (PGE2, PGF2 alpha and 6-keto-PGF1 alpha) in utero-ovarian venous plasma was examined in ewes on Days 10 through 14 after estrus, an interval which includes the critical period for maternal recognition of pregnancy. The utero-ovarian vein ipsilateral to a corpus luteum was catheterized on Day 9 or 10 in 6 pregnant and 8 nonpregnant ewes. Five blood samples were collected at 30-min intervals for 2 h beginning at 0500 and 1700 h daily. Sampling began at 0500 h on the day after catheterization. The mean and variance within each 2-h collection period were calculated for each ewe. The natural logarithm of the variance in each collection period (ln variance) was used as an estimate of the fluctuations in secretory activity by the endometrial-conceptus complex. Patterns of the mean concentrations of PGE2 were different between pregnant and nonpregnant ewes (P less than 0.01); PGE2 being higher in the pregnant ewes beginning on Day 13. There was a trend for the patterns of ln variance in PGE2 to differ (P less than 0.1) with pregnancy status over the entire period; ln variance was greater in pregnant ewes beginning on Day 13. The patterns of the mean concentrations and ln variances for PGF2 alpha and 6-keto-PGF1 alpha did not differ between pregnant and nonpregnant ewes. There were significant increases in both of these prostaglandins over time, independent of pregnancy status (P less than 0.01). The association of higher concentrations of PGE2 in utero-ovarian venous plasma with early pregnancy is consistent with the hypothesis that PGE2, originating from the uterus and/or conceptus, is one factor involved in maintenance of the corpus luteum of pregnancy.  相似文献   

10.
Estradiol (E2), testosterone (T) and progesterone (P4) concentrations were determined by enzyme-immunoassay in aqueous extracts of fecal samples obtained during anestrus, proestrus, estrus and metestrus of 11 nonpregnant and 11 pregnant bitches. Fecal hormone concentrations (ng/g) changed in relation to stage of cycle. Mean fecal steroid concentrations in 22 anestrous bitches and 3 ovariectomized bitches were low and similar for E2 (53 +/- 5 and 27 +/- 2), T (60 +/- 7 and 36 +/- 6), and P4 (62 +/- 6 and 86 +/- 15). Within 0 to 3 d of the ovulatory LH surge fecal E2 reached peak concentrations (301 +/- 38). The T peaks (281 +/- 41) were coincident or 1 to 3 d later. Fecal P4 was then elevated for approximately 2 m.o. Between Days 26 and 45 after ovulation, mean fecal P4 concentrations were higher (P < 0.05) in pregnant (401 +/- 60) than in nonpregnant bitches (164 +/- 23) and peak fecal P4 concentrations in individual animals were higher (P < 0.01) in pregnant (812 +/- 121) than in nonpregnant bitches (425 +/- 97). In the same period mean concentrations of E2 (117 +/- 13 vs 61 +/- 5) and T (102 +/- 10 vs 70 +/- 6) were also higher (P < or = 0.05) in pregnant than in nonpregnant bitches. Serum E2, T and P4 concentration were positively correlated (P = 0.1) with concentration in fecal samples obtained one day after serum collection. Although serial fecal ovarian steroid concentrations demonstrate the time course of ovulatory cycles, the diagnostic value of individual fecal samples appears limited. The ratios of peak to basal values were approximately 6, 5 and 7 for E2, T and P4, respectively, and were considerably lower than ratios of 12 to 50 previously reported for serum or plasma concentrations. The results demonstrate that there are pregnancy-specific increases in P4, E2 and T production reflected in fecal concentrations. While such increases are reflected in fecal samples, they are generally not evident in serum or plasma concentrations because of increased hemodilution, metabolism and clearance in pregnant bitches. The physiological stimulus for these increases, presumably ovarian in origin, or the potential role of prolactin is not known.  相似文献   

11.
The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.  相似文献   

12.
Although the mare corpus luteum (CL) is capable of aromatization, the expression of other enzymes involved in estradiol synthesis is not yet clear. This study examined the localization of P450C17 in the mare CL at different stages of its functional development. In ovaries from follicular phase mares P450C17 was localized in the theca cells of ovarian follicles. Following ovulation, no immunostaining for P450C17 was detected in the mature CLs of nonpregnant mares. In pregnant mares, no immunostaining for P450C17 was identified in the corpus luteum prior to secretion of eCG by the feto placental unit at Day 35 of pregnancy. The P450C17 was found to be expressed in CLs retrieved from Day 40 of pregnancy onwards. The changing expression of P450C17 raises the possibility that this may be a regulatory step for estrogen synthesis in the mare ovary.  相似文献   

13.
The temporal relationships between follicle deviation and systemic hormone concentrations were studied in mares. Blood samples were obtained at 01:00, 07:00, 13:00, and 19:00 h from nine mares throughout an interovulatory interval. Diurnal variation in progesterone occurred on Days 4-12 and in LH on Days 4 and 5; the lowest concentration for both hormones was at 13:00 h. Ultrasonically observed deviation in the ovulatory follicular wave began on Day 15.7+/-0.5 (ovulation=Day 0). An increase (P<0.002) in LH began on Day 14 before the beginning of deviation, and an increase (P<0.05) in estradiol began at the beginning of deviation. Testosterone concentrations began to increase (P<0.05) 2 days after the beginning of deviation and reached maximum 1 day before the next ovulation. The beginning of deviation was encompassed by a decline (P<0.003) in cortisol concentrations, and the concentrations remained low during the preovulatory period.  相似文献   

14.
Luz MR  Bertan CM  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1436-1441
The canine corpus luteum (CL) typically sustains elevated plasma progesterone concentrations for 2 months or more, with a peak approximately 15-25 days after ovulation, followed by a slow decline. The processes involved in the slow, protracted regression of the CL over the remaining 1.5-2-month period in nonpregnant bitches and until shortly prepartum in pregnant bitches are not well characterized. The rapid luteolysis that occurs immediately prepartum appears to be a result of a prepartum rise in peripheral PGF. The potential role of PGF in the slow regression process in the several weeks preceding parturition and in nonpregnant bitches after 15-25 days after ovulation is not known. Therefore, plasma concentrations of 13,14-dihydro-15-keto-prostaglandin F2-alpha (PGFM), progesterone (P4) and estradiol (E2) were determined and compared in bitches during nonpregnant diestrus (n = 9) or pregnancy (n = 8). During the gradual decrease in plasma concentrations of progesterone in both groups, the P4 pattern appeared unrelated to changes in either E2 or PGFM concentrations. The PGFM pattern was different between diestrus and pregnant bitches (P > 0.01); there was an apparent progressive but slow increase in PGFM in pregnant bitches from Days 30 to 60, followed by a large increase prior to parturition; concentrations declined immediately postpartum. However, there were no increases in PGFM during the same interval in nonpregnant bitches. Mean estradiol concentrations were sporadically elevated during the last third of pregnancy and less so in nonpregnant diestrus; there was no acute prepartum increase in estradiol associated with the PGFM increase. In summary, although there were no apparent changes in peripheral PGF2alpha concentration involved in regulating the slow protracted phase of luteal regression in nonpregnant bitches, modest increases in PGFM may play a role in ovarian function after mid-gestation in pregnant bitches. Furthermore, the acute prepartum rise in PGFM was not dependent on any concomitant increase in estradiol concentrations.  相似文献   

15.
One-minute continuous ultrasonic scans of longitudinal sections of the uterine body were videotaped, and contractility scores (1 to 5, minimal to maximal contractility) were assigned without knowledge of mare identity, day of the estrous cycle or pregnancy status. Contractility was assessed, and plasma progesterone concentrations were determined for each of 3 daily examinations (at 0800, 1600 and 2400 hours) from Day 9 to Day 19 (Day 0 = day of ovulation). For both the nonbred (n=11) and pregnant (n=11) mares, there was no effect of hour of scan on the extent of uterine contractility. When data for the nonbred mares were normalized to the onset of luteolysis (defined for each mare as the first >/=25% decrease in plasma progesterone concentrations between successive samples), there was an abrupt increase (P<0.05) in contractility 24 hours prior to the onset of luteolysis. Contractility was also assessed daily in 20 nonbred and 27 pregnant mares from Day 0 to Day 17. For the nonbred mares, a biphasic profile in contractility occurred during the estrous cycle as indicated by the following significant changes: a decrease between Days 0 and 2, an increase between Days 2 and 4, a plateau between Days 4 and 7, a decrease between Days 7 and 11, an increase between Days 11 and 13, and a decrease between Days 14 and 16. For pregnant mares, contractility increased (P<0.05) prior to the late-diestrous increase for nonbred mares. In addition, a significant reduction in contractility was detected on Day 5 in these mares compared with that in the nonbred mares. Contractility in the uterine body in 7 mares was assessed every 5 minutes after departure of the embryonic vesicle from the uterine body. Levels of contractility in the uterine body were lower (P<0.05) 55 minutes after the vesicle had exited the body than 相似文献   

16.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

17.
Hormonal profiles during postpartum estrus, time of conception, and pregnancy were determined in urine samples from six cotton-top tamarins (Saguinus oedipus oedipus). Noninvasive collection techniques permitted daily sampling throughout lactation and pregnancy. Urinary estrone (E1), estradiol (E2), and both bioactive and immunoreactive luteinizing hormone/chorionic gonadotropin (LH/CG) measures revealed an interval of 19 ± 2.07 (S E M) days between parturition and the postpartum ovulatory LH peak. An increase in both E1 and E2 was seen prior to the LH peak; however, E1 and E2 continued to increase to their highest concentrations after the LH peak. Since postpartum ovulations resulted in pregnancy, neither postpartum estrus nor conception was suppressed by lactation. The length of gestation (measured from the LH peak to parturition) was 183.7 ± 1.14 (S E M) days, which is at least 30 days longer than that previously reported for other callitrichid species. Both E1 and E2 reached their maximum levels during midpregnancy but showed a rapid decline at parturition. Gestational levels of CG were first detectable approximately 20 days after the LH peak and continued to be elevated for approximately 80 days. The Sub-Human Primate Tube Test (SHPTT) for pregnancy did not detect the LH Peak and was less sensitive than other methods in detecting CG. Two RIA methods and a bioassay technique could not distinguish between LH and CG. We concluded that monitoring both estrogen and LH concentration was needed to determine when ovulation occurs in the cotton-top tamarin, since peak values of estrogen are seen after the ovulatory LH peak. Also, these tamarins were pregnant the majority of the time, indicating an unusually high fertility rate in contrast to most noncallitrichid primate species.  相似文献   

18.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

19.
A direct enzyme immunoassay (EIA) for non-specific urinary progesterone (Po) metabolites, utilizing a non-specific monoclonal antibody against pregnanediol-3-glucuronide, was evaluated for the purpose of assessing luteal function in equids. Urinary pregnanediol-3-glucuronide (PdG) and immunoreactive PdG-like conjugate (iPdG) concentrations, indexed by creatinine, were compared to plasma Po concentrations in non-conceptive ovarian cycles through two ovulations in four mares. High-performance liquid chromatography (HPLC) of urine from lutealphase mares and a pregnant zebra revealed an absence of significant concentrations of PdG and the presence of at least three immunoreactive compounds, all of which were more polar than PdG. The concentration of iPdG in the mare ranged from a nadir of approximately 3 ng/mg Cr at the time of ovulation to nearly 400 ng/mg Cr at the mid-luteal-phase peak and paralleled plasma Po concentrations. This non-radiometric assay for iPdG permits the assessment of ovulation, luteal formation and function, and luteolysis in unprocessed urine samples from domestic mares. Data from a single zebra indicate this approach also will permit simplified and non-invasive longitudinal studies of ovarian function among a wide range of Equidae.  相似文献   

20.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号