首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coarse and fine root plants affect pore size distributions differently   总被引:4,自引:0,他引:4  

Aims

Small scale root-pore interactions require validation of their impact on effective hydraulic processes at the field scale. Our objective was to develop an interpretative framework linking root effects on macroscopic pore parameters with knowledge at the rhizosphere scale.

Methods

A field experiment with twelve species from different families was conducted. Parameters of Kosugi’s pore size distribution (PSD) model were determined inversely from tension infiltrometer data. Measured root traits were related to pore variables by regression analysis. A pore evolution model was used to analyze if observed pore dynamics followed a diffusion like process.

Results

Roots essentially conditioned soil properties at the field scale. Rooting densities higher than 0.5 % of pore space stabilized soil structure against pore loss. Coarse root systems increased macroporosity by 30 %. Species with dense fine root systems induced heterogenization of the pore space and higher micropore volume. We suggested particle re-orientation and aggregate coalescence as main underlying processes. The diffusion type pore evolution model could only partially capture the observed PSD dynamics.

Conclusions

Root systems differing in axes morphology induced distinctive pore dynamics. Scaling between these effective hydraulic impacts and processes at the root-pore interface is essential for plant based management of soil structure.  相似文献   

2.
The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.  相似文献   

3.
To assess whether bacteria influence the biogeochemical cycling of arsenic by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta, the arsenic species produced by D. tertiolecta were compared in “operationally sterile” and bacteria spiked cultures. It was observed that glycerol (Gly-) arsenoriboside (41–78 %), phosphate (PO4?) arsenoriboside (7–38 %) and arsenate (As(V)) (15–21 %) were the major water-soluble arsenic species in all D. tertiolecta cultures irrespective of whether cultures were operationally sterile or contained added bacteria. PO4-riboside (46–74 %) and Gly-riboside (24–36 %) were also the major arsenic species in hydrolysed lipid extracts of D. tertiolecta irrespective of whether cultures were operationally sterile or contained bacteria. In addition to similarities in the arsenic species produced, total arsenic concentrations and culture growth did not differ relative to whether cultures were operationally sterile or not. Similar bacterial strains were identified in all D. tertiolecta cultures irrespective of whether bacteria were added or not. Consequently, it is evident that the presence of “foreign” or “added” bacteria in D. tertiolecta has minimal influence on the metabolism and cycling of arsenic by phytoplankton. Thus, the use of laboratory phytoplankton cultures containing bacteria may be appropriate means to investigate arsenic biogeochemical cycling unlike previously believed.  相似文献   

4.
Many vadose zone models are available for environmental remediation, but few offer the procedures for verifying model predictions with field data and for dealing with uncertainties associated with model input parameters. This article presents a modified model combining a one-dimensional vadose-zone transport model and a simple groundwater mixing model with a function of Monte Carlo simulation (MCS). The modified model is applied to determine soil remedial concentrations for methyl tertiary butyl ether (MTBE). The modified model generates a distribution of MTBE ground-water concentrations at the point of compliance. This distribution can be used to estimate the risk of exceeding groundwater quality standard given soil remedial concentrations. In a case study, soil remedial concentration for MTBE is established to be 5?µg/kg, with a 95% and 10?µg/kg with a 50% probability that groundwater concentration will not exceed the water quality objective of 13?µg/L. Furthermore, this study uses MCS to investigate uncertainties of model input parameter hydraulic conductivity (K). One set of data (K1) is based on the results of hydraulic conductivity laboratory tests, and the other (K2) is based on the results of slug tests conducted in the field. As expected, the laboratory data show smaller K values than the field data. The comparison of the MCS results obtained from the two sets of K data indicates that the MTBE groundwater concentrations calculated based on K1 are generally 160 to 625% greater than those calculated based on K2 at the same percentiles of the MCS distribution. A higher soil remedial concentration of9jig/kg is then calculated based on the MCS results from K2 at 95%ile and 19?µg/kg at 50%ile.  相似文献   

5.
In laboratory experiments performed to evaluate the efficiency of surfactant flushing for remediation of non-aqueous phase liquid (NAPL) in the unsaturated zone, less than 0.001% of the original mass of tetra-chloroethylene (PCE) remained in the column after 15 pore volumes of a 1% sorbitan monooleate solution or after 7 pore volumes of a 1% Ethomid O/17 solution were passed through the columns. Mass removed as dissolved phase in the effluent accounted for more than 90% of PCE removed; the remainder was lost by volatilization. To determine the influence of parameters that may affect the remediation process, column tests were repeated with different values of parameters, including grain size, application rate, surfactant type, surfactant concentration, and solution viscosity. The results from the column experiments were simulated with the two-dimensional finite element computer code for multiphase flow and transport, MOTRANS. Results of the simulation were similar to those from the experiments. Both experimental and modeling results suggest that surfactant flushing has a great potential to remove mass from NAPL in the unsaturated zone.  相似文献   

6.
Magnetically-modified Sphingomonas sp. was prepared using covalent binding of magnetic nanoparticles on to the cell surface. The magnetic modified bacteria were immobilized in the fixed-bed bioreactors (FBR) by internal and external magnetic fields for the biodetoxification of a model organophosphate, parathion: 93 % of substrate (50 mg parathion/l) was hydrolyzed at 0.5 ml/min in internal magnetic field fixed-bed bioreactor. The deactivation rate constants (at 1 ml/min) were 0.97 × 10?3, 1.24 × 10?3 and 4.17 × 10?3 h?1 for immobilized bacteria in external and internal magnetic field fixed-bed bioreactor and FBR, respectively. The deactivation rate constant for immobilized magnetically modified bacteria in external magnetic field fixed-bed bioreactor (EMFFBR) was 77 % lower than that of immobilized cells by entrapping method on porous basalt beads in FBR at 1 ml/min. Immobilized magnetic modified bacteria exhibited maximum enzyme stability in EMFFBR.  相似文献   

7.
Contaminant biodegradation in unsaturated soils may reduce the risks of vapor intrusion. However, the reported rates show large variability and are often derived from slurry experiments that are not representative of unsaturated conditions. Here, different laboratory setups are used to derive the biodegradation capacity of an unsaturated soil layer through which gaseous toluene migrates from the water table upwards. Experiments in static unsaturated soil microcosms at 6–30 % water-filled porosity (WFP) and unsaturated soil columns at 9, 14, and 27 % WFP were compared with liquid batches containing the same culture of Alicycliphilus denitrificans. The biodegradation rates for the liquid batches were orders of magnitude lower than for the other setups. Hence, liquid batches do not necessarily reflect optimal conditions for bacteria; either oxygen or toluene mass transfer at the cell scale or the absence of soil–water–air interfaces seemed to be limiting bacterial activity. For the column setup, the rates were limited by mass supply. The microcosm results could be described by apparent first-order biodegradation constants that increased with WFP or through a numerical model that included biodegradation as a first-order process taking place in the liquid phase only. The model liquid phase first-order rates varied between 6.25 and 20 h?1 and were not related to the water content. Substrate availability was the primary factor limiting bioactivity, with evidence for physiological stress at the lowest water-filled porosity. The presented approach is useful to derive liquid phase biodegradation rates from experimental data and to include biodegradation in vapor intrusion models.  相似文献   

8.
Limestone aquifers provide the main drinking water resources of southern Italy. The groundwater is often contaminated by fecal bacteria because of the interaction between rocks having high permeability and microbial pollutants introduced into the environment by grazing and/or manure spreading. The microbial contamination of springwater in picnic areas located in high mountains can cause gastrointestinal illness. This study was carried out in order to analyze the interaction between Enterococcus faecalis and the soil of a limestone aquifer and to verify the influence of this interaction on the time dependence of groundwater contamination. E. faecalis was chosen because, in the study area involved, it represents a better indicator than Escherichia coli. The research was carried out through field (springwater monitoring) and laboratory experiments (column tests with intact soil blocks). The transport of bacterial cells through soil samples was analyzed by simulating an infiltration event that was monitored in the study area. Comparison of laboratory results with data acquired in the field showed that discontinuous precipitation caused an intermittent migration of microorganisms through the soil and produced, together with dispersion in the fractured medium (unsaturated and saturated zones), an articulated breakthrough at the spring. The short distances of bacterial transport in the study area produced a significant daily variability of bacterial contamination at the field scale.  相似文献   

9.
In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 μmol min?1 ml?1 culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field.  相似文献   

10.
Abstract

Tribenuron methyl (TBM) is widely used in weed control. Due to its phytotoxicity, concerns on TBM pollution to soil have been raised. In this research, TBM concentration in the soil profile and vetiver grass were measured and simulated using HYDRUS-1D and modified PRZM-3 models. The treatments were two herbicide concentrations to soil with vetiver (C1V and C2V) and without vetiver (C1S and C2S). In control treatment (Co) no herbicide was applied to the soil. In general, according to the measured data, TBM soil residues in C1V and C2V treatments were 39.8% and 30.1% lower than that obtained in C1S and C2S treatments, respectively. The TBM was leached to 90?cm soil depth and it was limited to about 50?cm in the treatments with vetiver grass. The simulated herbicide residue in the soil profile in modified PRZM-3 model was more accurate than the HYDRUS-1D model. The dissipation processes of herbicides in soil and solving method of water movement in soil, considered in the modified PRZM-3 model, are more precise than that obtained in the HYDRUS-1D model. However, the prediction of TBM uptake by vetiver in the HYDRUS-1D model was closer to the measured values than that obtained in the modified PRZM-3 model.  相似文献   

11.
The pore structure and pore size distribution (PSD) in the clayey till matrix from three Danish field sites were investigated by image analysis to assess the matrix migration of dechlorinating bacteria in clayey till. Clayey till samples had a wide range of pore sizes, with diameters of 0.1–100 μm, and two typical peaks of pore sizes were observed in all clayey till samples. A large area fraction of the individual pores centered around 2 μm in diameter, and another fraction centered around 20 μm. In general, the typical macropore sizes (1 μm < D < 30 μm) in clayey tills determined by image analysis account for approximately 30–60% of the total porosity (20–26%), which is within the range of those reported for clayey soils and other clayey deposits in the literature. The pore size, PSD, and interconnectivity of pores in clayey till matrix may play an important role in evaluation of the migration of dechlorinating bacteria between fractures and clayey till matrix. Dechlorinating bacteria are small (0.3–1 μm) and may have the ability to morphologically adapt to space constraints. The results in this paper in combination with recent field data indicate that the migration of dechlorinating bacteria in fractures and into the clayey till matrix is likely, which is of significance for natural and stimulated degradation of chlorinated solvents by reductive dechlorination in clayey tills.  相似文献   

12.
The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L?1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL?1) at 5 mg mL?1 l-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L?1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.  相似文献   

13.
Four novel metabolic 1,4-dioxane degrading bacteria possessing high ability to degrade 1,4-dioxane (designated strains D1, D6, D11 and D17) were isolated from soil in the drainage area of a chemical factory. Strains D6, D11 and D17 were allocated to Gram-positive actinomycetes, similar to previously reported metabolic 1,4-dioxane degrading bacteria, whereas strain D1 was allocated to Gram-negative Afipia sp. The isolated strains could utilize a variety of carbon sources, including cyclic ethers, especially those with carbons at position 2 that were modified with methyl- or carbonyl-groups. The cell yields on 1,4-dioxane were relatively low (0.179–0.223 mg-protein (mg-1,4-dioxane)?1), which was likely due to requiring energy for C–O bond fission. The isolated strains showed 2.6–13 times higher specific 1,4-dioxane degradation rates (0.052–0.263 mg-1,4-dioxane (mg-protein)?1 h?1) and 2.3–7.8 fold lower half saturation constants (20.6–69.8 mg L?1) than the most effective 1,4-dioxane degrading bacterium reported to date, Pseudonocardia dioxanivorans CB1190, suggesting high activity and affinity toward 1,4-dioxane degradation. Strains D1 and D6 possessed inducible 1,4-dioxane degrading enzymes, whereas strains D11 and D17 possessed constitutive ones. 1,4-Dioxane degradation (100 mg L?1) by Afipia sp. D1 was not affected by the co-existence of up to 3,000 mg L?1 of ethylene glycol. The effects of initial pH, incubation temperature and NaCl concentration on 1,4-dioxane degradation by the four strains revealed that they could degrade 1,4-dioxane under a relatively wide range of conditions, suggesting that they have a certain adaptability and applicability for industrial wastewater treatment.  相似文献   

14.
Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.  相似文献   

15.
Productivity of semiarid grasslands is primarily limited by seasonal rainfall amount and becomes increasingly limited by nutrient availability under wet conditions. Interactive effects of water and N availability on grassland productivity and parameters related to water use were studied on a grassland site in Inner Mongolia, China, in a 2-factorial experiment with two levels of water (rainfed: 158 mm; irrigated: 839 (N0) and 972 (N1) mm) and N supply (0 or 180 kg N ha?1). RUE was calculated from ANPP and cumulative water supply. Bare soil evaporation (E) was calculated from climatic data and leaf area dynamics, and percolation (D) and transpiration (T) were estimated with HYDRUS-1D. Water-use efficiency (WUE, ANPP / (T + D)) and transpiration efficiency (TE, ANPP / T) were calculated. Resource availability had pronounced effects on the water-use efficiency of semiarid grassland. RUE, WUE, and TE all decreased under irrigated compared to rainfed conditions and were significantly increased with N fertilizer application at both levels of water supply. While the irrigation effect on parameters of water-use efficiency were accordingly reflected in stable carbon isotope signatures, N supply resulted in significantly less negative δ13C-values under rainfed but not irrigated conditions. It is concluded, that spatial or temporal gradients in resource availability have pronounced effects on the water-use efficiency of semiarid grassland. The decrease of water use-efficiency under high water supply was related to differences in TE and not to a relative increase of unproductive water loss. Carbon isotope discrimination was highly correlated with WUE and TE, but can be a poor predictor of RUE.  相似文献   

16.
冻融交替后不同尺度黑土结构变化特征   总被引:10,自引:0,他引:10  
王恩姮  赵雨森  夏祥友  陈祥伟 《生态学报》2014,34(21):6287-6296
冻融交替是改变黑土结构、加剧土壤侵蚀的重要因子。以典型黑土区耕作土壤为研究对象,采用野外季节性冻融循环与室内模拟冻融循环相结合、X射线计算机断层摄影(CT)与扫描电子显微镜(SEM)相结合的方法,通过水分物理性质、团聚体破坏率、孔隙数目、孔隙面积、孔隙成圆率、孔隙Feret直径的测定与分析,研究了冻融交替后0—40 cm、40—80 cm和120—160 cm3个土层以及田间季节性冻融环刀、室内模拟冻融CT扫描和室内模拟冻融SEM3种方式下黑土结构特征的变化规律。结果表明:冻融交替能够对不同土层和不同尺度的耕地黑土结构产生不同程度的影响。季节性冻融后,表层土壤容重升高,非毛管孔隙度和持水能力显著降低(P0.05),40—80 cm土层团聚体破坏率增加40.97%(P0.05),土壤抗蚀性有所削弱,120—160 cm土壤没有受到季节性冻融的显著影响。CT扫描尺度上,3个土层均以1—2 mm径级的孔隙数目为最多,形状也相对规则、接近圆形;冻融循环没有对表层土壤大孔隙结构产生影响,却能够显著降低40—80 cm土层范围内大孔隙面积以及Feret直径(P0.05)。SEM扫描显示冻融后土壤表面粗糙度增加,颗粒松散、脱离,孔壁断裂,证明了冻融交替对土壤微结构的破坏作用;同时结合电子能谱的元素分析可知冻融交替能够改变土壤颗粒表面化学特征。  相似文献   

17.
In situ pumping of micellular solutions of surfactant (S) and cosurfactant (CoS) in water (W) through contaminated soils or aquifers offers potential for enhanced remediation of residual nonaqueous‐phase liquids (NAPLs). Extremely low interfacial tension generated between a W/S/CoS mixture and residual NAPL in soil pores may initially mobilize the NAPL, which is then transported temporarily as a separate phase by immiscible displacement. The NAPL is then solubilized by micro‐emulsification as the W/S/CoS mixture forms a stable W/S/CoS/NAPL micro‐emulsion that undergoes miscible displacement through the pore space. This remediation technique was tested under laboratory conditions by sequentially flushing a saline solution and a W/S/CoS mixture through columns of a sandy soil recently contaminated with residual leaded gasoline (LG). Prior to the flushings, the soil was initially contaminated by applying a W/S/CoS/LG microemulsion. A simple conceptual transport model with kinetic clogging of soil pores adequately described breakthrough curves for gasoline and organolead in the soil columns.  相似文献   

18.
The production of protease enzyme was evaluated through the solid state fermentation (SSF) of soy fibre, a waste product that acted as a sole substrate for the fermentation, at a laboratory and bench scale using a 500-mL (batch size 115 g) and 10-L (batch size 2300 g) bioreactors. The objective was to assess the effect of the inoculation of the thermophilic bacteria Thermus sp. on the production of the enzyme when working at laboratory and bench scale under non-sterile conditions, since scaling-up and the need of sterilization are the main challenges of SSF, preventing its industrial development. Results revealed that the inoculation led to a substantial increase in the protease obtained on both scales when compared to non-inoculated fermentation. The maximum protease activities increased as a result of the inoculation from 500 to 800 and from 350 to 670 U/g dry matter of soy fibre in the lab and bench scale bioreactors, respectively. Finally, a very good correlation was found between the protease activities obtained and the fermentation most relevant parameters: oxygen uptake rate (R 2 = 0.81) and temperature (R 2 = 0.82). In this work, we have demonstrated that inoculation is effective even under non-sterile conditions at the kg scale and that this strain is able to compete with autochthonous microbiota and increase the protease production to levels higher than those previously reported in literature.  相似文献   

19.
As a discarded lignocellulosic biomass, chestnut shell is of great potential economic value, thus a sustainable strategy is needed and valuable for utilization of this resource. Herein, the feasibility of biological processes of chestnut shell with Dichomitus squalens, Phlebia radiata and their co-cultivation for lignin-modifying enzymes (LMEs) production and biodegradation of this lignocellulosic biomass was investigated under submerged cultivation. The treatment with D. squalens alone at 12 days gained the highest laccase activity (9.42 ± 0.73 U mg?1). Combined with the data of laccase and manganese peroxidase, oxalate and H2O2 were found to participate in chestnut shell degradation, accompanied by a rapid consumption of reducing sugar. Furthermore, specific surface area of chestnut shell was increased by 77.6–114.1 % with the selected fungi, and total pore volume was improved by 90.2 % with D. squalens. Meanwhile, the surface morphology was observably modified by this fungus. Overall, D. squalens was considered as a suitable fungus for degradation of chestnut shell and laccase production. The presence of LMEs, H2O2 and oxalate provided more understanding for decomposition of chestnut shell by the white-rot fungi.  相似文献   

20.
Over the past decade, several species of non-indigenous ascidians have had adverse effects on a range of coastal ecosystems, and associated industries like aquaculture. One such species, the colonial ascidian Didemnum vexillum, poses a threat to the highly-valued New Zealand green-lipped mussel industry, and there is interest in whether and to what extent its spread can be managed at a regional scale (<100 km). An important component in the decision-making process for managing human-mediated pathways of spread is an understanding of D. vexillum’s natural dispersal potential. Here we use a weight-of-evidence approach, combining laboratory and field studies, to assess the role of natural dispersal mechanisms in the spread of D. vexillum. Under laboratory conditions, >70 % of D. vexillum larvae remained viable and were able to settle and undergo metamorphosis successfully following an artificial delay of 2 h. Larval viability decreased with increasing delay duration, although 10 % of larvae remained viable following a 36 h delay. A field-based study documented larval dispersal from two discrete source populations, with recruitment consistently detected on settlement plates at 250 m from source populations at one experimental site. Exponential decay models used to predict maximum larval dispersal distances at this site indicated that dispersal greater than 250 m is theoretically possible (>1 km in some situations). That being so, we recognise that the successful establishment and persistence of populations will depend on a wide range of processes not taken into account here. Our findings are supported by surveillance of D. vexillum spread in the wider study region; there are a number of instances where the species established on artificial structures that were several kilometres from known source populations, at a time when intensive regional-scale management of anthropogenic vectors was underway. Collectively, our findings indicate that D. vexillum has the ability to spread further by natural dispersal than previously assumed; probably hundreds of metres to kilometres depending on the local hydrological conditions, which has important implications for the ongoing management of this pest species world-wide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号