首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fold of human aquaporin 1   总被引:3,自引:0,他引:3  
The fold of human aquaporin 1 is determined from cryo-electron microscopic data at 4.5 A resolution. The monomeric structure consists of two transmembrane triple helices arranged around a pseudo-2-fold axis connected by a long flexible extracellular loop. Each triplet contains between its second and third helix a functional loop containing the highly conserved fingerprint NPA motif. These functional loops are assumed to fold inwards between the two triplets, thereby forming the heart of the water channel. The helix topology was determined from the directionality pattern of each of the six transmembrane helices with respect to the membrane, together with constraints defined by the sequence and atomic force microscopy data. The directionality of the helices was determined by collecting the best-fitting orientations resulting from a search through the three-dimensional experimental map for a large number of alpha-helical fragments. Tests on cryo-electron crystallographic bacteriorhodopsin data suggest that our method is generally applicable to determine the topology of helical proteins for which only medium-resolution electron microscopy data are available.  相似文献   

2.
The Na/Ca-K exchanger (NCKX) is a polytopic membrane protein that plays a critical role in Ca(2+) homeostasis in retinal rod and cone photoreceptors. The NCKX1 isoform is found in rods, while the NCKX2 isoform is found in cones, in retinal ganglion cells, and in various parts of the brain. The topology of the Na/Ca-K exchanger is thought to consist of two large hydrophilic loops and two sets of transmembrane spanning segments (TMs). The first large hydrophilic loop is located extracellularly at the N-terminus; the other is cytoplasmic and separates the two sets of TMs. The TMs consist of either five and five membrane spanning helices or five and six membrane spanning helices, depending upon the predictive algorithm used. Little specific information is yet available on the orientation of the various membrane spanning helices and the localization of the short loops connecting these helices. In this study, we have determined which of the connecting loops are exposed to the extracellular milieu using two different methods: accessibility of substituted cysteine residues and insertion of N-glycosylation sites. The two methods resulted in a consistent NCKX topology in which the two sets of TMs each contain five membrane spanning helices. Our new model places what was previously membrane spanning helix six in the cytoplasm, which places the C-terminus on the extracellular surface. Surprisingly, this NCKX topology model is different from the current NCX topology model with respect to the C-terminal three membrane helices.  相似文献   

3.
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.  相似文献   

4.
Ryanodine receptor type 1 (RyR1) produces spatially and temporally defined Ca2+ signals in several cell types. How signals received in the cytoplasmic domain are transmitted to the ion gate and how the channel gates are unknown. We used EGTA or neuroactive PCB 95 to stabilize the full closed or open states of RyR1. Single-channel measurements in the presence of FKBP12 indicate that PCB 95 inverts the thermodynamic stability of RyR1 and locks it in a long-lived open state whose unitary current is indistinguishable from the native open state. We analyzed two datasets of 15,625 and 18,527 frozen-hydrated RyR1-FKBP12 particles in the closed and open conformations, respectively, by cryo-electron microscopy. Their corresponding three-dimensional structures at 10.2 Å resolution refine the structure surrounding the ion pathway previously identified in the closed conformation: two right-handed bundles emerging from the putative ion gate (the cytoplasmic “inner branches” and the transmembrane “inner helices”). Furthermore, six of the identifiable transmembrane segments of RyR1 have similar organization to those of the mammalian Kv1.2 potassium channel. Upon gating, the distal cytoplasmic domains move towards the transmembrane domain while the central cytoplasmic domains move away from it, and also away from the 4-fold axis. Along the ion pathway, precise relocation of the inner helices and inner branches results in an approximately 4 Å diameter increase of the ion gate. Whereas the inner helices of the K+ channels and of the RyR1 channel cross-correlate best with their corresponding open/closed states, the cytoplasmic inner branches, which are not observed in the K+ channels, appear to have at least as important a role as the inner helices for RyR1 gating. We propose a theoretical model whereby the inner helices, the inner branches, and the h1 densities together create an efficient novel gating mechanism for channel opening by relaxing two right-handed bundle structures along a common 4-fold axis.  相似文献   

5.
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5.  相似文献   

6.
Here we report the first three-dimensional structure of a higher plant photosystem II core dimer determined by electron crystallography at a resolution sufficient to assign the organization of its transmembrane helices. The locations of 34 transmembrane helices in each half of the dimer have been deduced, 22 of which are assigned to the major subunits D1 (5), D2 (5), CP47 (6), and CP43 (6). CP47 and CP43, located on opposite sides of the D1/D2 heterodimer, are structurally similar to each other, consisting of 3 pairs of transmembrane helices arranged in a ring. Both CP47 and CP43 have densities protruding from the lumenal surface, which are assigned to the loops joining helices 5 and 6 of each protein. The remaining 12 helices within each half of the dimer are attributed to low-molecular-weight proteins having single transmembrane helices. Comparison of the subunit organization of the higher plant photosystem II core dimer reported here with that of its thermophilic cyanobacterial counterpart recently determined by X-ray crystallography shows significant similarities, indicative of a common evolutionary origin. Some differences are, however, observed, and these may relate to variations between the two classes of organisms in antenna linkage or thermostability.  相似文献   

7.
The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.  相似文献   

8.
Structural clues in the sequences of the aquaporins   总被引:13,自引:0,他引:13  
The large number of sequences available for the aquaporin family represents a valuable source of information to incorporate into three-dimensional structure determination. Phylogenetic analysis was used to define type sequences to avoid extreme over-representation of some subfamilies, and as a measure of the quality of multiple sequence alignment. Inspection of the sequence alignment suggested eight conserved segments that define the core architecture of six transmembrane helices and two functional loops, B and E, projecting into the plane of the membrane. The sum of the core segments and the minimum lengths of the interlinking loops constitute the 208 residues necessary to satisfy the aquaporin architecture. Analysis of hydrophobic and conservation periodicity and of correlated mutations across the alignment indicated the likely assignment and orientation of the helices in the bilayer. This assignment is examined with respect to the structure of the erythrocyte aquaporin 1 determined by electron crystallography. The aquaporin 1 tetramer is described as three rings of helices, each ring with a different exposure to the lipid environment. The sequence analysis clearly suggests that two helices are exposed along their whole lengths, two helices are exposed only at their N termini, and two helices are not exposed to lipid. It is further proposed that, besides loops B and E, the highly conserved motifs on helices 1 and 4, ExxxTxxF/L, could line the water channel.  相似文献   

9.
The most conspicuous structural characteristic of the alpha-helical membrane proteins is their long transmembrane alpha-helices. However, other structural elements, as yet largely ignored in statistical studies of membrane protein structure, are found in those parts of the protein that are located in the membrane-water interface region. Here, we show that this region is enriched in irregular structure and in interfacial helices running roughly parallel with the membrane surface, while beta-strands are extremely rare. The average amino acid composition is different between the interfacial helices, the parts of the transmembrane helices located in the interface region, and the irregular structures. In this region, hydrophobic and aromatic residues tend to point toward the membrane and charged/polar residues tend to point away from the membrane. The interface region thus imposes different constraints on protein structure than do the central hydrocarbon core of the membrane and the surrounding aqueous phase.  相似文献   

10.
A structural model of the transmembrane portion of the acetylcholine receptor was developed from sequences of all its subunits by using transfer energy calculations to locate transmembrane alpha-helices and to calculate which helical side chains should be in contact with water inside the channel, with portions of other transmembrane helices, or with lipid hydrocarbon chains. "Knobs-into-holes" side chain packing calculations were used with other factors to stack the transmembrane alpha-helices together. In the model each subunit has the following structures in order along the sequence from the NH2 terminus: a large extracellular domain of undetermined structure, a short apolar alpha-helix that lies on the extracellular lipid surface of the membrane; three apolar transmembrane alpha-helices (I, II, and III), a cytoplasmic domain of undetermined structure, an amphipathic transmembrane alpha-helix (L) that forms the channel lining, a short extracellular alpha-helix, another apolar transmembrane alpha-helix (IV), and a small cytoplasmic domain formed by the COOH-terminal end of the chain. Three concentric layers form the pore. A bundle of five amphipathic L helices forms the channel lining. This bundle is surrounded by a bundle of 10 alternating II and III helices. Helices I and IV cover portions of the outer surface of the bundle formed by helices II and III. Positions of disulfide bridges are predicted and a mechanism for opening and closing conformational changes is proposed that requires tilting transmembrane helices and possibly a thiol-disulfide interchange reaction.  相似文献   

11.
Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like beta-barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [sij] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% alpha-helix) with little or no beta-sheet content. 2) The alpha-helices have a transmembrane orientation, but are more tilted (21 degrees or 27 degrees, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated alpha-helices that span the lipid membrane.  相似文献   

12.
Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.  相似文献   

13.
The intradiskal surface of the transmembrane protein, rhodopsin, consists of the amino terminal domain and three loops connecting six of the seven transmembrane helices. This surface corresponds to the extracellular surface of other G-protein receptors. Peptides that represent each of the extramembraneous domains on this surface (three loops and the amino terminus) were synthesized. These peptides also included residues which, based on a hydrophobic plot, could be expected to be part of the transmembrane helix. The structure of each of these peptides in solution was then determined using two-dimensional 1H nuclear magnetic resonance. All peptide domains showed ordered structures in solution. The structures of each of the peptides from intradiskal loops of rhodopsin exhibited a turn in the central region of the peptide. The ends of the peptides show an unwinding of the transmembrane helices to form this turn. The amino terminal domain peptide exhibited alpha-helical regions with breaks and bends at proline residues. This region forms a compact domain. Together, the structures for the loop and amino terminus domains indicate that the intradiskal surface of rhodopsin is ordered. These data further suggest a structural motif for short loops in transmembrane proteins. The ordered structures of these loops, in the absence of the transmembrane helices, indicate that the primary sequences of these loops are sufficient to code for the turn.  相似文献   

14.
The human erythrocyte facilitative glucose transporter (Glut1) is predicted to contain 12 transmembrane spanning alpha-helices based upon hydropathy plot analysis of the primary sequence. Five of these helices (3, 5, 7, 8, and 11) are capable of forming amphipathic structures. A model of GLUT1 tertiary structure has therefore been proposed in which the hydrophilic faces of several amphipathic helices are arranged to form a central aqueous channel through which glucose traverses the hydrophobic lipid bilayer. In order to test this model, we individually mutated each of the amino acid residues in transmembrane segment 7 to cysteine in an engineered GLUT1 molecule devoid of all native cysteines (C-less). Measurement of 2-deoxyglucose uptake in a Xenopus oocyte expression system revealed that nearly all of these mutants retain measurable transport activity. Over one-half of the cysteine mutants had significantly reduced specific activity relative to the C-less protein. The solvent accessibility and relative orientation of the residues within the helix was investigated by determining the sensitivity of the mutant transporters to inhibition by the sulfhydryl directed reagent p-chloromercuribenzene sulfonate (pCMBS). Cysteine replacement at six positions (Gln(282), Gln(283), Ile(287), Ala(289), Val(290), and Phe(291)), all near the exofacial side of the cell membrane, produced transporters that were inhibited by incubation with extracellular pCMBS. Residues predicted to be near the cytoplasmic side of the cell membrane were minimally affected by pCMBS. These data demonstrate that the exofacial portion of transmembrane segment 7 is accessible to the external solvent and provide evidence for the positioning of this alpha-helix within the glucose permeation pathway.  相似文献   

15.
16.
When isolated in its monomeric form, subunit c of the proton transporting ATP synthase of Escherichia coli was shown to fold in a hairpin-like structure consisting of two hydrophobic membrane spanning helices and a short connecting hydrophilic loop. In the plasma membrane of Escherichia coli, however, about 9-12 c-subunit monomers form an oligomeric complex that functions in transmembrane proton conduction and in energy transduction to the catalytic F1 domain. The arrangement of the monomers and the molecular architecture of the complex were studied by tryptophan scanning mutagenesis and restrained MD simulations. Residues 12-24 of the N-terminal transmembrane segment of subunit c were individually substituted by the large and moderately hydrophobic tryptophan side chain. Effects on the activity of the mutant proteins were studied in selective growth experiments and various ATP synthase specific activity assays. The results identify potential intersubunit contacts and structurally non-distorted, accessible residues in the c-oligomer and add constraints to the arrangement of monomers in the oligomeric complex. Results from our mutagenesis experiments were interpreted in structural models of the c-oligomer that have been obtained by restrained MD simulations. Different stoichiometries and monomer orientations were applied in these calculations. A cylindrical complex consisting of 10 monomers that are arranged in two concentric rings with the N-terminal helices of the monomers located at the periphery shows the best match with the experimental data.  相似文献   

17.
Urea is exploited as a nitrogen source by bacteria, and its breakdown products, ammonia and bicarbonate, are employed to counteract stomach acidity in pathogens such as Helicobacter pylori. Uptake in the latter is mediated by UreI, a UAC (urea amide channel) family member. In the present paper, we describe the structure and function of UACBc, a homologue from Bacillus cereus. The purified channel was found to be permeable not only to urea, but also to other small amides. CD and IR spectroscopy revealed a structure comprising mainly α-helices, oriented approximately perpendicular to the membrane. Consistent with this finding, site-directed fluorescent labelling indicated the presence of seven TM (transmembrane) helices, with a cytoplasmic C-terminus. In detergent, UACBc exists largely as a hexamer, as demonstrated by both cross-linking and size-exclusion chromatography. A 9 ? (1 ?=0.1 nm) resolution projection map obtained by cryo-electron microscopy of two-dimensional crystals shows that the six protomers are arranged in a planar hexameric ring. Each exhibits six density features attributable to TM helices, surrounding a putative central channel, while an additional helix is peripherally located. Bioinformatic analyses allowed individual TM regions to be tentatively assigned to the density features, with the resultant model enabling identification of residues likely to contribute to channel function.  相似文献   

18.
The major facilitator superfamily (MFS) represents the largest collection of evolutionarily related members within the class of membrane 'carrier' proteins. OxlT, a representative example of the MFS, is an oxalate-transporting membrane protein in Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional crystals of OxlT, we have determined the projection structure of this membrane transporter. The projection map at 6 A resolution indicates the presence of 12 transmembrane helices in each monomer of OxlT, with one set of six helices related to the other set by an approximate internal two-fold axis. The projection map reveals the existence of a central cavity, which we propose to be part of the pathway of oxalate transport. By combining information from the projection map with related biochemical data, we present probable models for the architectural arrangement of transmembrane helices in this protein superfamily.  相似文献   

19.
CD39 can exist in at least two distinct functional states depending on the presence and intact membrane integration of its two transmembrane helices. In native membranes, the transmembrane helices undergo dynamic rotational motions that are required for enzymatic activity and are regulated by substrate binding. In this study, we show that bilayer mechanical properties regulate conversion between the two enzymatic functional states by modulating transmembrane helix dynamics. Alteration of membrane properties by insertion of cone-shaped or inverse cone-shaped amphiphiles or by cholesterol removal switches CD39 to the same enzymatic state that removal or solubilization of the transmembrane domains does. The same membrane alterations increase the propensity of both transmembrane helices to rotate within the packed structure, resulting in a structure with greater mobility but not an altered primary conformation. Membrane alteration also abolishes the ability of the substrate to stabilize the helices in their primary conformation, indicating a loss of coupling between substrate binding and transmembrane helix dynamics. Removal of either transmembrane helix mimics the effect of membrane alteration on the mobility and substrate sensitivity of the remaining helix, suggesting that the ends of the extracellular domain have intrinsic flexibility. We suggest that a mechanical bilayer property, potentially elasticity, regulates CD39 by altering the balance between the stability and flexibility of its transmembrane helices and, in turn, of its active site.  相似文献   

20.
Abstract

The major intrinsic protein (MIP) of the bovine lens fiber cell membrane was the first member of the MIP family of proteins to be sequenced and characterized. It is probably a homotetramer with transmembrane channel activity that plays a role in lens biogenesis or maintenance. The polypeptide chain of each subunit may span the membrane six times, and both the N- and C-termini face the cell cytoplasm. Eighteen sequenced or partially sequenced proteins from bacteria, yeast, plants, and animals have now been shown to be members of the MIP family. These proteins appear to function in (1) metazoan development and neurogenesis (MIP and BIB), (2) water transport across the human erythrocyte membrane (ChIP), (3) communication between host plant cells and symbiotic nitrogen-fixing bacteria (NOD), (4) transport across the tonoplast membrane during plant seed development (α-TIP), (5) water stress-induced resistance to desiccation in plants (Wsi-TIP), (6) suppression of a genetic growth defect on fermentable sugars in yeast (FPS1), and (7) transport of glycerol across bacterial cell membranes (GlpF). One other sequenced member of the MIP family (ORF1 of Lactococcus lactis) has no known physiological function. The biochemical functions of the eukaryotic proteins are not well established.

Computer analyses have revealed that the first and second halves of all MTP family proteins probably arose by a tandem, intragenic, duplication event. Thus, the primary structure of putative transmembrane helices 1 to 3 is similar to that of putative transmembrane helices 4 to 6 even though they are of opposite orientation in the membrane. Among the most conserved residues in these two repeated halves are a membrane-embedded glutamate (E) in helices 1 and 4, an asparagine-proline-alanine (NPA) sequence in the loops between helices 2 and 3 (cytoplasmically localized) and helices 5 and 6 (extracellularly localized), and a glycine within helices 3 and 6. Statistical analyses suggest that the two halves of these proteins have evolved to serve distinct functions: the first half is more important for the generalized or common functions of these proteins, while the second half of these proteins is more differentiated to provide specific or dissimilar functions of the proteins. The apparent origin of MIP family proteins by duplication of a three-spanner precursor protein suggests an evolutionary origin distinct from other transport proteins with six transmembrane spanners. Based on the phylogenetic tree for the 18 sequenced members of the MTP family, we propose that a single, primordial gene arose in prokaryotes shortly before the emergence of eukaryotes, mat this gene was vertically transmitted to the principal eukaryotic kingdoms, and that subsequent gene duplication and divergence events gave rise to kingdom-related subfamilies or clusters of the MIP family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号