首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study establishes a phylogenetic framework for the natural geographic isolates of the widely studied nematode species Caenorhabditis elegans. Virtually complete mitochondrial genomes are sequenced from 27 C. elegans natural isolates to characterize mitochondrial divergence patterns and to investigate the evolutionary history of the C. elegans hermaphrodite lineages. Phylogenetic analysis of mitochondrial sequences reveals the presence of two major C. elegans hermaphrodite clades (designated clade I and clade II). Fifty-six nuclear loci, widely distributed across the five autosomes and the X chromosome, are also analyzed in a subset of the C. elegans isolates to evaluate nuclear divergence patterns and the extent of mating between different strains. A comparison of the phylogenetic tree derived from mitochondrial data with the phylogenetic tree derived from nuclear data reveals only one inconsistency in the distribution of isolates into clades I and II, suggesting that mating between divergent C. elegans strains is an infrequent event in the wild.  相似文献   

2.
    
A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models.  相似文献   

3.
The nematode Caenorhabditis elegans has been the subject of many detailed investigations in developmental biology. Molecular analyses have failed to detect covalent alterations to DNA, such as methylation or rearrangement, during development of C. elegans. Genetic experiments indicate that imprinting of gamete genomes does not occur to any significant extent. The maintenance of gene activity states in this organism may depend predominantly on regulatory gene circuitry. Some possible examples of maintenance circuits are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Abstract: Extracts of the nematode Caenorhabditis elegans contain five molecular forms of acetylcholinesterase (AChE) activity that can be separated by a combination of selective solubilization, velocity sedimentation, and ion-exchange chromatography. These are called form IA (5.2s), form IB (4.9.s), form II (6.7s), form III (11.3s), and form IV (13.0s). All except form III are present in significant amounts in rapidly prepared extracts and are probably native; form III is probably derived autolytically from form IV. Most of forms IA and IB can be solubilized by repeated extractions without detergent, whereas forms II, III, and IV require detergent for effective solubilization and may therefore be membrane-bound. High salt concentrations are not required for, and do not aid in, the solubilization of these forms. For all forms, molecular weights and frictional ratios have been estimated by a combination of gel permeation chromatography and velocity sedimentations in both H2O and D2O. The molecular weight estimates range from 83,000 to 357,000 and only form II shows extensive asymmetry. The separated forms have been characterized with respect to substrate affinity, substrate specificity, inhibitor sensitivity, thermal inactivation, and detergent sensitivity. Judging by these properties, C. elegans is like other invertebrates in that none of its cholinesterase forms resembles either the “true” or the “pseudo” cholinesterase of vertebrates. However, internal comparison of the C. elegans forms clearly distinguishes forms IA, III, and IV as a group from forms IB and II; the former are therefore designated “class A” forms, the latter “class B” forms. Genetic evidence indicates that separate genes control class A and class B forms, and that these two classes overlap functionally. Several factors, including kinetic properties, molecular asymmetry, molecular size, and solubility, all suggest that a molecular model of the multiple cholinesterase forms observed in vertebrate electric organs probably does not apply in C. elegans. Potential functional roles and subunit structures of the multiple AChE forms within each C. elegans class are discussed.  相似文献   

5.
Caenorhabditis elegans has previously been used as an alternative to mammalian models of infection with bacterial pathogens. We have developed a liquid-based assay to measure the effect of bacteria on the feeding ability of C. elegans. Using this assay we have shown that Pseudomonas aeruginosa strain PA14, Burkholderia pseudomallei and Yersinia pestis were able to inhibit feeding of C. elegans strain N2. An increase in sensitivity of the assay was achieved by using C. elegans mutant phm-2, in place of the wild-type strain. Using this assay,P. aeruginosa PA01 inhibited the feeding of C. elegans mutant phm-2. Such liquid-based feeding assays are ideally suited to the high-throughput screening of mutants of bacterial pathogens.  相似文献   

6.
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host–pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.  相似文献   

7.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

8.
秀丽隐杆线虫(Caenorhabditis elegans)以其个体小、易培养、生活周期短等优势成为生物发育、衰老、神经及免疫相关机制研究的模式生物.它在实验室培养时主要靠饲喂大肠杆菌OP50,有报道,细菌及其代谢物对线虫的代谢、行为和寿命有至关重要的影响.因此,作为一个遗传模型,秀丽隐杆线虫可以帮助研究微生物与宿主相...  相似文献   

9.
Polyglutamine (polyQ) expansion in many proteins, including huntingtin and ataxin-3, is pathogenic and responsible for neuronal dysfunction and degeneration. Although at least nine neurodegenerative diseases are caused by expanded polyQ, the pathogenesis of these diseases is still not well understood. In the present study, we used Caenorhabditis elegans to study the molecular mechanism of polyQ-mediated toxicity. We expressed full-length and truncated ataxin-3 with different lengths of polyQ in the nervous system of C. elegans. We show that expanded polyQ interrupts synaptic transmission, and induces swelling and aberrant branching of neuronal processes. Using an ubiquitinated fluorescence reporter construct, we also showed that polyQ aggregates impair the ubiquitin-proteasome system in C. elegans. These results may provide information for further understanding the pathogenesis of polyQ diseases.  相似文献   

10.
    
Hermaphroditic organisms are key models in sex allocation research, yet the developmental processes by which hermaphrodite sex allocation can evolve remain largely unknown. Here we use experimental evolution of hermaphrodite‐male (androdioecious) Caenorhabditis elegans populations to quantify the developmental changes underlying adaptive shifts in hermaphrodite sex allocation. We show that the experimental evolution of increased early‐life self‐fertility occurred through modification of a suite of developmental traits: increased self‐sperm production, accelerated oogenesis and ovulation, and increased embryo retention. The experimental evolution of increased self‐sperm production delayed entry into oogenesis—as expected, given the sequentially coupled production of self‐spermatogenesis and oogenesis. Surprisingly, however, delayed oogenesis onset did not delay reproductive maturity, nor did it trade‐off with gamete or embryo size. Comparing developmental time dynamics of germline and soma indicates that the evolution of increased sperm production did not delay reproductive maturity due to a globally accelerated larval development during the period of self‐spermatogenesis. Overall, heterochrony in gametogenesis and soma can explain adaptive shifts in hermaphrodite sex allocation.  相似文献   

11.
以秀丽线虫作为评价蓖麻碱毒性的模式生物,通过测定不同浓度的蓖麻碱提取物对线虫的半致死浓度、生殖能力和体内酶活性的影响,对蓖麻碱的毒性进行初步评价。结果表明,蓖麻碱提取物的48h的LD50为0.977mg/mL,72h的LD50为0.821mg/mL;随着蓖麻碱提取物浓度从0.5mg/mL增加到2.0mg/mL,虫体的SOD活性由(80.669±3.2)U/mg降低至(1.532±0.2)U/mg;CAT活性由(70.947±2.7)U/mg降低至(0.234±2.1)U/mg。说明蓖麻碱提取物浓度越大,毒性越强,线虫体内酶活越低,蓖麻碱提取物可使秀丽线虫生殖能力降低或丧失。  相似文献   

12.
13.
Trehalose extends longevity in the nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Trehalose is a disaccharide of glucose found in diverse organisms and is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation. Here, we demonstrate that treatment of Caenorhabditis elegans with trehalose starting from the young‐adult stage extended the mean life span by over 30% without any side effects. Surprisingly, trehalose treatment starting even from the old‐adult stage shortly thereafter retarded the age‐associated decline in survivorship and extended the remaining life span by 60%. Demographic analyses of age‐specific mortality rates revealed that trehalose extended the life span by lowering age‐independent vulnerability. Moreover, trehalose increased the reproductive span and retarded the age‐associated decrease in pharyngeal‐pumping rate and the accumulation of lipofuscin autofluorescence. Trehalose also enhanced thermotolerance and reduced polyglutamine aggregation. These results suggest that trehalose suppressed aging by counteracting internal or external stresses that disrupt protein homeostasis. On the other hand, the life span‐extending effect of trehalose was abolished in long‐lived insulin/IGF‐1‐like receptor (daf‐2) mutants. RNA interference‐mediated inactivation of the trehalose‐biosynthesis genes trehalose‐6‐phosphate synthase‐1 (tps‐1) and tps‐2, which are known to be up‐regulated in daf‐2 mutants, decreased the daf‐2 life span. These findings indicate that a reduction in insulin/IGF‐1‐like signaling extends life span, at least in part, through the aging‐suppressor function of trehalose. Trehalose may be a lead compound for potential nutraceutical intervention of the aging process.  相似文献   

14.
为了阐明铜(Cu)对秀丽隐杆线虫Caenorhabditis elegans长期作用的毒性效应,对实验室多代筛选的耐铜型秀丽隐杆线虫进行了寿命、衰老、发育、生殖和运动等生物学指标的研究.结果显示耐铜型秀丽隐杆线虫与野生型秀丽隐杆线虫相比其寿命缩短、衰老提前、个体发育受到抑制,且出现繁殖率降低、生殖能力减弱、运动行为存在障碍等一系列生理变化.本文为理解与阐明Cu的毒性效应提供了实验资料,有助于深入开展Cu毒性机理的研究.  相似文献   

15.
《Free radical research》2013,47(7):813-820
Abstract

This group has invented a novel deuterohemin containing peptide deuterohemin-AlaHisThrValGluLys (DhHP-6), which has various biological activities including protection of murine ischemia reperfusion injury, improving cell survival and preventing apoptosis. It was hypothesized that DhHP-6 is beneficial on the lifespan of Caenorhabditis elegans (C. elegans) and increases their resistance to heat and oxidative stress. C. elegans were treated with different concentrations of DhHP-6. Survival time and sensitivity to heat and paraquat were investigated. The data demonstrated that the mean survival time of C. elegans was significantly increased (p < 0.05) in the DhHP-6 treated group compared with the control group. The maximum lifespan was not affected by DhHP-6 treatment. DhHP-6 improved the survival rate of C. elegans in the acute heat stress (35°C) and rescued the C. elegans' sensitivity to paraquat in acute oxidative stress. Superoxide dismutase 3 (SOD-3) protein was up-regulated by DhHP-6 treatment. It was further demonstrated that stress resistance genes such as hsp-16.1, hsp-16.49 and sir-2.1 were regulated by DhHP-6. DAF-16 and SIR-2.1 genes are essential for the beneficial effect of DhHP-6. Therefore, the investigation into the beneficial effect of DhHP-6 on C. elegans' lifespan has the potential to develop novel drugs to prevent ageing.  相似文献   

16.
以秀丽线虫作为研究体内抗衰老作用的模型生物,研究槲皮素抗衰老作用及其机制.通过对秀丽线虫上进行的寿命分析实验、生殖能力测试和压力应激测试所得指标,探讨槲皮素延缓线虫衰老的作用机理.结果表明,高剂量的槲皮素组能显著延长线虫的平均寿命和最大寿命百分率分别为35.97%、20%(p<0.001),对其生殖能力没有损害.提高线...  相似文献   

17.
Caenorhabditis elegans can reproduce exclusively by self-fertilization. Yet, males can be maintained in laboratory populations, a phenomenon that continues to puzzle biologists. In this study we evaluated the role of males in facilitating adaptation to novel environments. For this, we contrasted the evolution of a fitness component exclusive to outcrossing in experimental populations of different mating systems. We introgressed a modifier of outcrossing into a hybrid population derived from several wild isolates to transform the wild-type androdioecious mating system into a dioecious mating system. By genotyping 375 single-nucleotide polymorphisms we show that the two populations had similar standing genetic diversity available for adaptation, despite the occurrence of selection during their derivation. We then performed replicated experimental evolution under the two mating systems from starting conditions of either high or low levels of diversity, under defined environmental conditions of discrete non-overlapping generations, constant density at high population sizes (N = 104), no obvious spatial structure and abundant food resources. During 100 generations measurements of sex ratios and male competitive performance showed: 1) adaptation to the novel environment; 2) directional selection on male frequency under androdioecy; 3) optimal outcrossing rates of 0.5 under androdioecy; 4) the existence of initial inbreeding depression; and finally 5) that the strength of directional selection on male competitive performance does not depend on male frequencies. Taken together, these results suggest that androdioecious males are maintained at intermediate frequencies because outcrossing is adaptive.  相似文献   

18.
Action of high temperature (36°C) on the nematode Caenorhabditis elegans organism was manifested in errors of the motor program of swimming induced by a mechanical stimulus (37 ± 2 min), the complete, but reversible cessation of locomotion (57 ± 3 min), while damage—in thermal death (215 ± 5 min). Addition into medium of atropine (10?8–10?9 M) and chemical stimuli (10?8–10?6 cAMP or lysine) causes considerable changes of thermal stability of the worm locomotion. Analysis of these data has shown that the cause of the reversible thermal disturbance of the C. elegans locomotion is disintegration of neurons in the nervous centers regulating behavior. The obtained data indicate the presence in the simple organism of C. elegans of adaptations increasing stability of processes of integration of neurons to a high temperature, which were found earlier in arthropods and vertebrates.  相似文献   

19.
20.
Dietary deprivation extends lifespan in Caenorhabditis elegans   总被引:5,自引:0,他引:5  
Dietary restriction (DR) is well known as a nongenetic intervention that robustly extends lifespan in a variety of species; however, its underlying mechanisms remain unclear. We have found in Caenorhabditis elegans that dietary deprivation (DD) during adulthood, defined as removal of their food source Escherichia coli after the completion of larval development, increased lifespan and enhanced thermotolerance and resistance to oxidative stress. DD-induced longevity was independent of one C. elegans SIRTUIN, sir-2.1, which is required for the effects of DR, and was independent of the daf-2/insulin-like signaling pathway that independently regulates longevity and larval diapause in C. elegans. DD did not significantly alter lifespan of fem-1(hc17); eat-2(ad465) worms, a genetic model of DR. These findings suggest that DD and DR share some downstream effectors. In addition, DD was detrimental for longevity when imposed on reproductively active young adults, suggesting that DD may only be beneficial in the absence of competing metabolic demands, such as fertility. Adult-onset DD offers a new paradigm for investigating dietary regulation of longevity in C. elegans. This study presents the first evidence that long-term DD, instead of being detrimental, can extend lifespan of a multicellular adult organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号