首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

2.
Vesicles are continually transported from the perinuclear region to the cell's exterior in the unicellular red alga Glaucosphaera vacuolata Korshikov. This phenomenon is recorded here with time‐lapse videomicroscopy. The mechanism governing this intracellular motility is unknown but the cytoskeleton is believed to be involved. Microtubules and actin filaments are located in Glaucosphaera using fluorescently conjugated antibodies and FITC‐phallicidin, respectively. Microtubules radiate in all planes from the perinuclear region to the periphery whereas actin filaments form rings around migrating vesicles. This pattern of location might indicate that both microtubules and actin filaments are involved in vesicle transport. However, this conclusion is not confirmed directly because the thick mucilaginous wall material seemed to prevent the entry of cytoskeletal inhibitors. A video clip of vesicle movement is available at http://www.cytographics.com/ .  相似文献   

3.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

4.
Organelle Movements along Actin Filaments and Microtubules   总被引:6,自引:0,他引:6       下载免费PDF全文
Organelle movements involving microtubules and actin filaments are a conspicuous and important feature of many plant cells. Movements have recently been supported in preparations of demembranated cytoplasm and reconstituted from purified proteins. The favored mechanism involves organelles carrying a force-generating ATPase moving along a track provided by either actin filaments or microtubules. Cytoplasmic free Ca2+ concentration regulates at least some organelle movements.  相似文献   

5.
Actin-Binding Proteins in Plant Cells   总被引:1,自引:0,他引:1  
Abstract: Actinoccurs in all plant cells, as monomers, filaments and filament assemblies. In interphase, actin filaments form a cortical network, co-align with cortical microtubules, and extend throughout the cytoplasm functioning in cytoplasmic streaming. During mitosis, they co-align with microtubules in the preprophase band and phragmoplast and are indispensa ble for cell division. Actin filaments continually polymerise and depolymerise from a pool of monomers, and signal transduction pathways affecting cell morphogenesis modify the actin cytoskeleton. The interactions of actin monomers and filaments with actin-binding proteins (ABP5) control actin dynamics. By binding to actin monomers, ABPs, such as profilin, regulate the pool of monomers available for polymerisation. By breaking filaments or capping filament ends, ABPs, such as actin depoly-merising factor (ADF), prevent actin filament elongation or loss of monomers from filament ends. By bivalent cross-linking to actin filaments, ABPs, such as fimbrin and other members of the spectrin family, produce a variety of higher order assemblies, from bundles to networks. The motor protein ABPs,. which are not covered in this review, move organelles along ac tin filaments. The large variety of ABPs share a number of functional modules. A plant representative of ABPs with particular modules, and therefore particular functions, is treated in this review.  相似文献   

6.
Ooplasmic segregation in the late interphase zygote of the leech Theromyzon trizonare is accomplished by reorganization of an ectoplasmic cytoskeleton formed by polar rings and meridional bands. The dynamic properties of this cytoskeleton were explored by time-lapse confocal and video microscopy. Cytoskeleton assembly was investigated in zygotes pulse-labeled with microinjected fluorophore-tagged or biotin-tagged dimeric tubulin and G-actin. Cytoskeleton disassembly was studied by comparing the linear dimensions of the cytoskeleton at different time points during late interphase. The relative distributions of F- and-G-actin were determined after microinjection of rhodamine-labeled actin and fluorescein-labeled DNase I. Results showed that labeled precursors were readily incorporated into a network of microtubules or actin filaments. Bipolar translocation of the rings and meridional bands was accompanied by the rapid assembly and disassembly of microtubules and actin filaments. Because labeled microtubules and microfilaments gradually decreased, the rate of cytoskeleton disassembly was greater than the rate of cytoskeleton assembly. Hence, ooplasmic segregation was accompanied by the rapid turnover of cytoskeletal components. Co-distribution of F- and-G-actin during mid and late interphase may favor polymer-monomer interchange. We conclude that cytoskeleton reorganization during foundation of cytoplasmic domains can be conveniently studied in the live leech zygote after microinjection of labeled precursors.  相似文献   

7.
Cytoskeleton and vesicle mobility in astrocytes   总被引:2,自引:0,他引:2  
Exocytotic vesicles in astrocytes are increasingly viewed as essential in astrocyte-to-neuron communication in the brain. In neurons and excitable secretory cells, delivery of vesicles to the plasma membrane for exocytosis involves an interaction with the cytoskeleton, in particular microtubules and actin filaments. Whether cytoskeletal elements affect vesicle mobility in astrocytes is unknown. We labeled single vesicles with fluorescent atrial natriuretic peptide and monitored their mobility in rat astrocytes with depolymerized microtubules, actin, and intermediate filaments and in mouse astrocytes deficient in the intermediate filament proteins glial fibrillary acidic protein and vimentin. In astrocytes, as in neurons, microtubules participated in directional vesicle mobility, and actin filaments played an important role in this process. Depolymerization of intermediate filaments strongly affected vesicle trafficking and in their absence the fraction of vesicles with directional mobility was reduced.  相似文献   

8.
Summary Embryogenic cultures have been produced for a wide range of conifers and current methods developed for spruce permit the maturation of high quality embryos that can be desiccated and then germinated to form plantlets. Embryogenic suspensions consisting of immature embryos are an excellent source of regenerable protoplasts. This review considers examples of applications of embryogenic suspension cultures for basic studies in three areas of plant cell biology. a) Immunofluorescence studies of microtubules in mitotic spruce cells reveal focused spindle poles at prophase and anphase, suggesting the presence of microtubule organizing centers (MTOCs). Antibodies known to recognize animal MTOCs do not stain the polar regions but do stain developing kinetochores. b) Embryo-derived protoplasts regenerate directly to somatic embryos. Fluorescence studies of the cytoskeleton in freshly derived protoplasts reveal random cortical microtubules and a fine network of actin filaments. During culture, protoplasts change shape and develop transverse cortical microtubule arrays. Embryonal cells of newly formed embryos possess distinctive arrays of cortical microtubules and networks of fine actin filaments while suspensor cells are characterized by transverse cortical microtubules and longitudinal actin cables. c) Transmission electron microscope studies of endocytosis in spruce protoplasts reveal an endocytotic pathway similar to that described previously for soybean. Uptake results are confirmed using high pressure freeze fixation instead of conventional chemical fixation. Presented in the Session-in-Depth Morphogenesis: Plant Cell and Tissue Differentiation at the 1994 Congress on Cell and Tissue Culture, Research Triangle Park, NC, June 4–7, 1994.  相似文献   

9.
Nematocytes of hydra feature a complex cytoskeleton consisting mainly of several bundles of actin filaments and a basket-like structure formed by microtubules. The aim of this study was to establish the sequence of appearance of cytoskeletal elements during nematocyte development using immuno-fluorescence and electron microscopical techniques. Our results are a first step in trying to understand developmental hierarchies and mechanisms which govern the synthesis and assembly of the cytoskeleton in nematocytes. The finger-shaped rods around the apex of the capsule are the first detectable elements of the cytoskeleton. Microtubules of the basket structure then follow and later, the actin filaments of microvilli which support the cnidocil. The actin filaments, however, do not show the highly ordered bundling pattern characteristic of filaments in functional nematocytes.  相似文献   

10.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

11.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

12.
Plakins are cytoskeletal linker proteins initially thought to interact exclusively with intermediate filaments (IFs), but recently were found to associate additionally with actin and microtubule networks. Here, we report on ACF7, a mammalian orthologue of the Drosophila kakapo plakin genetically involved in epidermal-muscle adhesion and neuromuscular junctions. While ACF7/kakapo is divergent from other plakins in its IF-binding domain, it has at least one actin (K(d) = 0.35 microM) and one microtubule (K(d) approximately 6 microM) binding domain. Similar to its fly counterpart, ACF7 is expressed in the epidermis. In well spread epidermal keratinocytes, ACF7 discontinuously decorates the cytoskeleton at the cell periphery, including microtubules (MTs) and actin filaments (AFs) that are aligned in parallel converging at focal contacts. Upon calcium induction of intercellular adhesion, ACF7 and the cytoskeleton reorganize at cell-cell borders but with different kinetics from adherens junctions and desmosomes. Treatments with cytoskeletal depolymerizing drugs reveal that ACF7's cytoskeletal association is dependent upon the microtubule network, but ACF7 also appears to stabilize actin at sites where microtubules and microfilaments meet. We posit that ACF7 may function in microtubule dynamics to facilitate actin-microtubule interactions at the cell periphery and to couple the microtubule network to cellular junctions. These attributes provide a clear explanation for the kakapo mutant phenotype in flies.  相似文献   

13.
Microtubules are cytoskeletal polymers which play a role in cell division, cell mechanics, and intracellular transport. Each of these functions requires microtubules that are stiff and straight enough to span a significant fraction of the cell diameter. As a result, the microtubule persistence length, a measure of stiffness, has been actively studied for the past two decades1. Nonetheless, open questions remain: short microtubules are 10-50 times less stiff than long microtubules2-4, and even long microtubules have measured persistence lengths which vary by an order of magnitude5-9.Here, we present a method to measure microtubule persistence length. The method is based on a kinesin-driven microtubule gliding assay10. By combining sparse fluorescent labeling of individual microtubules with single particle tracking of individual fluorophores attached to the microtubule, the gliding trajectories of single microtubules are tracked with nanometer-level precision. The persistence length of the trajectories is the same as the persistence length of the microtubule under the conditions used11. An automated tracking routine is used to create microtubule trajectories from fluorophores attached to individual microtubules, and the persistence length of this trajectory is calculated using routines written in IDL.This technique is rapidly implementable, and capable of measuring the persistence length of 100 microtubules in one day of experimentation. The method can be extended to measure persistence length under a variety of conditions, including persistence length as a function of length along microtubules. Moreover, the analysis routines used can be extended to myosin-based acting gliding assays, to measure the persistence length of actin filaments as well.  相似文献   

14.
The novel microtubule-interacting protein Mip-90 was originally isolated from HeLa cells by using affinity columns of agarose derivatized with peptides from the C-terminal regulatory domain on β-tubulin. Biochemical and immunocytochemical data have suggested that the association of Mip-90 with the microtubule system contributes to its cellular organization. Here we report the interaction patterns of Mip-90 with microtubules and actin filaments in interphase human fibroblasts. A polyclonal monospecific antibody against Mip-90 was used for immunofluorescence microscopy analysis to compare the distribution patterns of this protein with tubulin and actin. A detailed observation of fibroblasts revealed the colocalization of Mip-90 with microtubules and actin filaments. These studies were complemented with experiments using cytoskeleton-disrupting drugs which showed that colocalization patterns of Mip-90 with microtubules and actin filaments requires the integrity of these cytoskeletal components. Interestingly, a colocalization of Mip-90 with actin at the leading edge of fibroblasts grown under subconfluency was observed, suggesting that Mip-90 could play a role in actin organization, particularly at this cellular domain. Mip-90 interaction with actin polymers was further supportedin vitroby cosedimentation and immunoprecipitation experiments. The cosedimentation analysis indicated that Mip-90 bound to actin filaments with an association constantKa= 1 × 106M−1, while an stoichiometry Mip-90/actin of 1:12 mol/mol was calculated. Western blots of the immunoprecipitates revealed that Mip-90 associated to both actin and tubulin in fibroblasts extracts. These studies indicate that Mip-90, described as a microtubule-interacting protein, also bears the capacity to interact with the microfilament network, suggesting that it may play a role in modulating the interactions between these cytoskeletal filaments in nonneuronal cells.  相似文献   

15.
Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell's sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04 Pa to 5 Pa. Vibrations were applied at magnitudes of 0.15g, 1g, and 2g using frequencies of both 100 Hz and 30 Hz. After 14 d and under low fluid shear conditions associated with 100 Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30 Hz vibrations enhanced mineralization only in the 2g group. Over 3 d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott–Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.  相似文献   

16.
The Golgi apparatus undergoes irreversible fragmentation during apoptosis, in part as a result of caspase-mediated cleavage of several Golgi-associated proteins. However, Golgi structure and orientation is also regulated by the cytoskeleton and cytoskeletal changes have been implicated in inducing apoptosis. Consequently, we have analyzed the role of actin filaments and microtubules in apoptotic Golgi fragmentation. We demonstrate that in Fas receptor-activated cells, fragmentation of the Golgi apparatus was an early event that coincided with release of cytochrome c from mitochondria. Significantly, Golgi fragmentation preceded major changes in the organization of both the actin cytoskeleton and microtubules. In staurosporine-treated cells, actin filament organization was rapidly disrupted; however, the Golgi apparatus maintained its juxtanuclear localization and underwent complete fragmentation only at later times. Attempts to stabilize actin filaments with jasplakinolide prior to treatment with staurosporine did not prevent Golgi fragmentation. Finally, in response to Fas receptor activation or staurosporine treatment the levels of beta-actin or alpha-tubulin remained unaltered, whereas several Golgi proteins, p115 and golgin-160, underwent caspase-mediated cleavage. Our data demonstrate that breakdown of the Golgi apparatus is an early event during apoptosis that occurs independently of major changes to the actin and tubulin cytoskeleton.  相似文献   

17.
The cytoskeleton is composed of three distinct elements: actin microfilaments, microtubules and intermediate filaments. The actin cytoskeleton is thought to provide protrusive and contractile forces, and microtubules to form a polarized network allowing organelle and protein movement throughout the cell. Intermediate filaments are generally considered the most rigid component, responsible for the maintenance of the overall cell shape. Cytoskeletal elements must be coordinately regulated for the cell to fulfill complex cellular functions, as diverse as cell migration, cell adhesion and cell division. Coordination between cytoskeletal elements is achieved by signaling pathways, involving common regulators such as the Rho guanosine-5'-triphosphatases (GTPases). Furthermore, evidence is now accumulating that cytoskeletal elements participate in regulating each other. As a consequence, although their functions seem well defined, they are in fact overlapping, with actin playing a role in membrane trafficking and microtubules being involved in the control of protrusive and contractile forces. This cytoskeletal crosstalk is both direct and mediated by signaling molecules. Cell motility is a well-studied example where the interplay between actin and microtubules appears bidirectional. This leads us to wonder which, if any, cytoskeletal element leads the way.  相似文献   

18.
Cytoskeletal proteins assemble into dynamic polymers that play many roles in nuclear and cell division, signal transduction, and determination of cell shape and polarity. The distribution and dynamics of microtubules (MTs) and actin filaments (AFs) are determined, among other factors, by the location of their nucleation sites. Whereas the sites of microtubule nucleation in plants are known to be located under the plasma membrane and on the nuclear envelope during interphase, there is a striking lack of information about nucleation sites of AFs. In the studies reported herein, low temperature (0 °C) was used to de‐polymerize AFs and MTs in tobacco BY‐2 (Nicotiana tabacum L.) cells at interphase. The extent of de‐polymerization of cytoskeletal filaments in interphase cells during cold treatment and the subcellular distribution of nucleation sites during subsequent recovery at 25 °C were monitored by means of fluorescence microscopy. The results show that AFs re‐polymerized rapidly from sites located in the cortical region and on the nuclear envelope, similarly to the initiation sites of MTs. In contrast to MTs, however, complete reconstitution of AFs was preceded by the formation of transient actin structures including actin dots, rods, and filaments with a dotted signal. Immunoblotting of soluble and sedimentable protein fractions showed no changes in the relative amounts of free and membrane‐bound actin or tubulin.  相似文献   

19.
Summary. Lipotubuloids, i.e., cytoplasmic domains containing an agglomeration of lipid bodies surrounded by half-unit membrane, entwined and held together by a system of microtubules, have been found in the ovary epidermis of Ornithogalum umbellatum. Ultrastructural studies demonstrated thin filaments in lipotubuloids that are probably actin filaments arranged parallel to microtubules. It is suggested that interaction of actin filaments with the microtubules determines the driving force for the rotary motion characteristic of lipotubuloids, as this movement is sensitive to cytochalasin B. Correspondence: Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231 Łódź, Poland.  相似文献   

20.
Summary— We have developed a new method for immunogold detection on deep-etch replicas of isolated Xenopus egg cortices in order to examine the interactions of different cortical elements in three dimensions at high resolution. We have applied this technique to vegetal cortices isolated during the second half of the first cell cycle. The vegetal cortical region at this time is the site of cellular machinery responsible for the ‘cortical rotation’. The entire cortex translocates with respect to the inner cytoplasm, relocating dorsalising determinants to the future dorsal side of the egg. The aligned microtubules in the shear zone between cytoplasm and cortex, implicated in the cortical rotation, were found to be organised as interweaving loose bundles. Interleaved amongst these aligned microtubules were extensive sheets of ER lying in layers parallel to the egg surface. Cytokeratin filaments were found to associate closely with the microtubules over short stretches. Putative actin filaments were present in the shear zone and in the cortex. Eg5, an abundant kinesin-related microtubule motor protein, and candidate for a role in generating cortical rotation movement, showed an almost exclusive localisation to microtubules. Immunofluorescence studies of cortices treated with detergent to disrupt ER or cold to depolymerise microtubules confirmed that Eg5 associates primarily with microtubules. We propose revised models for the mechanism of cortical rotation based on these observations and conclude that Eg5 is unlikely to move ER relative to microtubules during the cortical rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号