首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The melanization reaction of insects requires activation of pro-phenoloxidase by a proteolytic cascade leading to melanin production. Studies in adult mosquitoes have shown that bacteria are efficiently melanized in the hemocoel, but the contribution of melanization to survival after bacterial infections has not been established. Here we show that the Anopheles gambiae noncatalytic serine protease CLIPA8, an essential factor for Plasmodium ookinete melanization, is also required for melanization of bacteria in adult mosquitoes. CLIPA8 silencing by RNA interference inhibits pro-phenoloxidase activation and melanization of bacteria in the hemolymph following microbial challenge. However, CLIPA8 is not required for wound melanization nor for melanotic pseudotumor formation in serpin2 knockdown mosquitoes, suggesting a specific role for pathogen melanization. Surprisingly, CLIPA8 knockdown mosquitoes are as resistant to bacterial challenge as controls, indicating that melanization is not essential for defense against bacteria and questions its precise role in mosquito immunity.  相似文献   

2.
3.
Shin SW  Zou Z  Raikhel AS 《EMBO reports》2011,12(9):938-943
Microbial infections in the mosquito Aedes aegypti activate the newly identified CLSP1 and CLSP2 genes, which encode modular proteins composed of elastase-like serine protease and C-type lectin domains. These genes are predominantly regulated by the immune deficiency pathway, but also by the Toll pathway. Silencing of CLSP2, but not CLSP1, results in the activation of prophenoloxidase (PPO), the terminal enzyme in the melanization cascade, suggesting that CLSP2 is a negative modulator of this reaction. Haemolymph PPO activation is normally inhibited in the presence of Plasmodium parasites, but in CLSP2-depleted mosquitoes, the Plasmodium-induced block of melanization is reverted, and these mosquitoes are refractory to the parasite. Thus, CLSP2 is a new component of the mosquito immune response.  相似文献   

4.
In insects and other arthropods the formation of eumelanin (melanization) is a broad spectrum and potent immune response that is used to encapsulate and kill invading pathogens. This immune response is regulated by the activation of prophenoxidase (proPO), which is controlled by proteinase cascades and its serpin inhibitors, together forming the proPO activation system. While the molecular composition of these protease cascades are well understood in insect model systems, major knowledge gaps remain in mosquitoes. Recently, a regulatory unit of melanization in Anopheles gambiae was documented, comprised of the inhibitory serpin-clip-serine proteinase, CLIPB9 and its inhibitor serpin-2 (SRPN2). Partial reversion of SRPN2 phenotypes in melanotic tumor formation and adult survival by SRPN2/CLIPB9 double knockdown suggested other target proteinases of SRPN2 in regulating melanization. Here we report that CLIPB8 supplements the SRPN2/CLIPB9 regulatory unit in controlling melanization in An. gambiae. As with CLIPB9, knockdown of CLIPB8 partially reversed the pleiotropic phenotype induced by SRPN2 silencing with regards to adult survival and melanotic tumor formation. Recombinant SRPN2 protein formed an SDS-stable protein complex with activated recombinant CLIPB8, however did not efficiently inhibit CLIPB8 activity in vitro. CLIPB8 did not directly activate proPO in vitro nor was it able to cleave and activate proCLIPB9. Nevertheless, epistasis analysis using RNAi placed CLIPB8 and CLIPB9 in the same pathway leading to melanization, suggesting that CLIPB8 either acts further upstream of CLIPB9 or is required for activation of a yet to be identified serine proteinase homolog. Taken together, this study identifies CLIPB8 as an additional player in proPO activation cascade and highlights the complexity of the proteinase network that regulates melanization in An. gambiae.  相似文献   

5.
A refractory strain of the mosquito, Anopheles gambiae, melanotically encapsulates and kills many species of malaria parasites, whereas susceptible strains allow the parasites to develop normally. To study the role of surface characteristics in eliciting this immune response, 27 types of chromatography beads that differed in matrix type, charge, functional group, and functional group density were assayed for degree of melanotic encapsulation in refractory and susceptible mosquitoes. Overall, two glucan-based matrices, Sephadex (dextran) and cellulose, stimulated the strongest responses, regardless of functional group. Substituting matrix hydroxyl groups with functional groups on Sephadex and cellulose beads decreased the level of encapsulation. These results demonstrate that glucans induce melanotic encapsulation in An. gambiae. Beads with agarose, polystyrene, and acrylic matrices, and most methacrylate-based beads elicited little or no melanization; however, epoxide-methacrylate beads were encapsulated, demonstrating that glucans are not essential for eliciting a response. Comparisons between the two strains demonstrated that refractory mosquitoes melanized many bead types to a greater degree than did susceptible mosquitoes. On this basis, we propose that an important difference between the two strains is that one of the enzymes involved in the melanization pathway functions at a higher level in the refractory strain. Finally, of all beads tested, only 85% substituted CM-Sephadex beads were virtually unmelanized in susceptible mosquitoes but highly melanized in the refractory strain; thus, a specific surface microenvironment is necessary to demonstrate this effect.  相似文献   

6.
Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic fungi with more potent bio-control activities against mosquitoes.  相似文献   

7.
Serine proteases play an important role in activation of prophenoloxidase (proPO), a critical enzyme in the production of melanin. We tested the effect of knockdown of gene expression for five clip domain serine proteases on melanization of abiotic targets in Anopheles gambiae. Knockdown of CLIPB4 resulted in a striking lack of melanization of Sephadex beads while knockdown of CLIPB8 caused a strong shift towards incompletely melanized beads. Knockdown of CLIPB1, B9 and B10 had lesser effects. CLIPB4 and CLIPB8 are strong candidates for activating enzymes in the proPO enzymatic cascade.  相似文献   

8.
We have performed a global genome expression analysis of mosquito responses to CM-25 Sephadex beads and identified 27 regulated immune genes, including several anti-Plasmodium factors and other components with likely roles in melanization. Silencing of two bead injection responsive genes, TEP1 and LRIM1, which encode proteins known to mediate Plasmodium killing, significantly compromised the ability to melanize the beads. In contrast, silencing of two Plasmodium protective c-type lectins, CTL4 and CTLMA2, did not affect bead melanization. This data suggest that the anti-Plasmodium factors have dual functions, as determinants of both Plasmodium killing and melanization of the parasite and other foreign bodies, while the Plasmodium protective factors are specifically utilized by the parasite for evasion of mosquito defense mechanisms.  相似文献   

9.
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.  相似文献   

10.
11.
In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.  相似文献   

12.
The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate-binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae-P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue.  相似文献   

13.
Despite significant progress in the identification of the genetic basis of the refractory phenotype, little is known about the physiological mechanism of refractoriness. This study therefore examined the physiological basis of mosquito refractoriness in the Aedes aegypti/P. gallinaceum system, in which a selected refractory strain does not permit Plasmodium oocyst formation. We examined the kinetics of two major proteolytic enzymes involved in blood meal digestion and the dynamics of ookinete formation for two refractory populations (strains Moyo-R and Formosus) and one susceptible population (strain Red). Healthy ookinetes were observed in both the susceptible and the refractory populations, although the susceptible population generally exhibited higher enzymatic activity for trypsin and aminopeptidase than the refractory populations. Parasite numbers in the susceptible Red population showed a 4- to 7-fold decrease in abundance during the transition from the ookinete stage to the oocyst stage, far less than the refractory populations (30- to 92-fold reduction). Due to its smaller body size, Moyo-R individuals generally ingest a smaller blood meal and thus intake fewer gametocytes than Red individuals. Thus, the possibility that refractoriness in the Moyo-R population results from fewer gametocytes being ingested is examined. We found that the Red population remained highly susceptible and the Moyo-R population stayed refractory when those individuals with similar blood meal size were compared. We conclude that failure of oocyst development in the refractory mosquitoes is not due to ookinete damage by proteolytic enzymes or to fewer gametocytes being ingested, but rather is due to a midgut barrier or to some other mechanism.  相似文献   

14.
15.
Two dietary resources - blood and sugar - were assessed for effects on the melanization immune response of the mosquito Anopheles stephensi Liston (Diptera: Culicidae) towards inoculated Sephadex beads (negatively charged C-25). This melanization is conferred by genetic factors capable of making the mosquito refractory to malaria parasites. If An. stephensi females had obtained a bloodmeal one day before inoculation with a bead, the efficacy of their immune response increased with the concentration of sugar ingested. At the highest sugar concentration (6%) tested, 38% of the mosquitoes completely melanized their bead, whereas at the lowest sugar concentration (2%), none of the mosquitoes were able to melanize their bead completely. Among mosquitoes not having a bloodmeal, the immuno-competence was low (c. 9% of the mosquitoes completely melanized their bead) and independent of sugar concentration. The observed interaction between these two resources indicates that both resources are required for the Anopheles female to develop an effective melanization immune response.  相似文献   

16.
17.
A Plasmodium-refractory strain of Anopheles gambiae melanotically encapsulates many species of Plasmodium, whereas wild-type mosquitoes are usually susceptible. This encapsulation trait can also be observed by studying the response of refractory and susceptible strains to intrathoracically injected CM-Sephadex beads. We report the results of broad-scale quantitative trait locus (QTL) mapping of the encapsulation trait using the bead model system. Interval mapping using the method of maximum likelihood identified one major QTL, Pen1. The 13.7-cM interval containing Pen1 was defined by marker AGH157 at 8E and AGH46 at 7A on 2R. Pen1 was associated with a maximum LOD score of 9.0 and accounted for 44% of the phenotypic variance in the distribution of phenotypes in the backcross. To test if this QTL is important for encapsulation of Plasmodium berghei, F(2) progeny were infected with P. berghei and evaluated for degree of parasite encapsulation. For each of the two markers that define the interval containing Pen1, a significant difference of encapsulation was seen in progeny with at least one refractory allele in contrast with homozygous susceptible progeny. These results suggest that Pen1 is important for melanotic encapsulation of Plasmodium as well as beads.  相似文献   

18.
A melanogenic enzyme, phenoloxidase, was localized ultrastructurally in the midgut epithelia of 2 strains of Anopheles gambiae, a refractory strain that melanotically encapsulates Plasmodium cynomolgi ookinetes on the midgut, and a susceptible strain that does not. Midguts were incubated with either dopa or dopamine, and the resultant electron-dense product of phenoloxidase activity was localized on the basal lamina (BL) and cellular basal membrane labyrinth (BML) in uninfected mosquitoes of both strains. In infected refractory mosquitoes, the reaction products still were observed on the BL and BML but were especially dense in the BML of midgut cells near encapsulated ookinetes and in the capsule itself. In infected susceptible mosquitoes, phenoloxidase localization was reduced or absent in the BL and BML and was not observed near parasites. Phenylthiourea (PTU) inhibited the phenoloxidase reaction, indicating that the reaction product deposited in the absence of PTU resulted from enzyme activity and not autooxidation of the substrates. It is concluded that higher levels of phenoloxidase in the refractory strain following a blood meal may contribute to the ability to encapsulate ookinetes.  相似文献   

19.
Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium.  相似文献   

20.
Intracellular melanization, a defense or an immune response in the thoracic muscle cells, was investigated in a refractory strain of Anopheles quadrimaculatus infected with larvae of Brugia malayi. In mosquitoes fed on B. malayi-infected jirds, intracellular melanization against first-stage larvae (L1) was better expressed when fewer than 40 microfilariae reached the thoracic muscle cells than when more than 40 microfilariae reached the thoracic muscle cells. This result suggests that when large numbers of microfilariae invade the thoracic muscle cells, the immune response of the mosquito may become overloaded. Intracellular melanization response against L1 in the thoracic muscle cells also showed a significant decrease in older females (14-16-day-old) as compared to the younger ones (4-9-day-old). A comparison is made between intracellular and extracellular responses of mosquitoes to filarial larvae. It is significant that in both cases high rate of infection can reduce both the number and percentage of larvae melanized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号