首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms of thermal regulation of skin blood flow during local heating to 35, 40 and 45 'C have been studied by the method of laser Doppler flowmetry in healthy volunteers. To estimate the state of microvascular bed the continuous wavelet-transform spectral analysis has been used. The amplitudes of fluxmotions in the range of blood flow active modulation significantly increase during local heating to 35 degrees C. The amplitudes of blood flow oscillations in the ranges of cardiorhythm and respiratory rhythm increase during local heating to 40 degrees C. The high amplitude oscillations in the range of myogenic activity are maintained. The amplitude of oscillations in the range of endothelial activity distinctly decreases and the oscillations in the range of neurogenic activity are inhibited. Local heating to 45 degrees C results in a significant decreasing of the oscillation amplitudes in the range of myogenic activity, and the amplitudes of cardio- and respiratory spectral components amount to their peak values among the temperatures of local heating under study.  相似文献   

2.
IntroductionPhysiological tremor, as a whole, can be influenced by changes in muscle activity. However, the origin of low-frequency physiological tremor oscillations has yet to be conclusively determined. It is possible that by experimentally manipulating muscular activity, a better determination of the origin of those low-frequency oscillations can be achieved. It was demonstrated that changes in joint angle modify characteristics of muscular activity. As such, we hypothesize that changes in wrist-joint angle will alter the characteristics of low-frequency physiological tremor oscillations.ObjectiveAssess the influence of changes in joint angle of the wrist on characteristics of physiological finger tremor.MethodsPhysiological finger tremor was recorded (n = 25) using a laser displacement system while the arm and hand were supported. The relative angle between the dorsum of the hand and the forearm was altered between conditions (135°, 180°, 225° and 270°), while the hand and the finger remained parallel to the ground. EMG of the extensors and flexors were also recorded.ResultsTremor amplitude was significantly altered by changes in wrist-joint angle. This was especially the case for lower frequency oscillations. In addition, electromyography properties of forearm muscles were also significantly modified by changes in wrist-joint angles.ConclusionsThis study demonstrates that changes in wrist-joint angle modify the characteristics of physiological finger tremor. This should be taken into account when interpreting tremor data as well as when developing tools to minimize tremor.  相似文献   

3.
The effects of four average temperatures (7, 16, 23 and 33 degrees C) and daily oscillations with three amplitudes (0, +/-4, +/-7 degrees C) on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium were investigated in small microcosms. Manure was inoculated with a green fluorescent protein transformed strain of either pathogen at 10(7) cells g(-1) dry weight. Samples were collected immediately after inoculation, and 1 and 2 weeks after inoculation for E. coli O157:H7, and immediately and after 2 and 3 weeks for Salmonella serovar Typhimurium. Population densities were determined by dilution plating and direct counting. In addition, total bacterial CFUs were determined. Growth and survival data were fitted to a modified logistic model. Analysis of the estimated parameter values showed that E. coli O157:H7 survived for shorter periods of time and was more sensitive to competition by the native microbial community than Salmonella serovar Typhimurium. Survival of both pathogens significantly declined with increasing mean temperatures and with increasing amplitude in daily temperature oscillations. The results indicated that responses of enteropathogens to fluctuating temperatures cannot be deduced from temperature relationships determined under constant temperatures.  相似文献   

4.
Cell interactions have been studied in cultures pf hepatocytes from young and old rats. The rhythm of protein synthesis is an index of cell interaction and synchronization in culture, while the amplitude of oscillations characterized cell cooperation in an aggregate rhythm. The mean rhythm amplitude in the culture of hepatocytes from old rats is twice lower than that from young rats. Gangliosides (mixture, bovine brain gangliosides) and alpha1-adrenomimetic phenylephrine enhanced synchronization of cultures of the cells from old rats and increased the amplitude of oscillations to the level of young animals. Addition of rat blood serum (10%) to the medium revealed the rhythm of protein synthesis in the culture, asynchronous in the control, i.e., led to their synchronization. In media with young and old rat blood sera, oscillations were intense, with high amplitudes, and low, respectively. Addition of bovine brain gangliosides to a medium with old rat blood serum increased the amplitudes of oscillations to a level of the rhythm stimulated by the young rat serum. Thus, the cells of old animals can fully perceive synchronizing factors and, in the case of their increased concentration, the rhythm of protein synthesis in old animals did not differ from that in young rats. Current data on biochemical mechanisms underlying intercellular cooperation in the formation of population rhythm of protein synthesis have been discussed.  相似文献   

5.
The influence of activity-related changes in tension on properties of the mechanomyogram (MMG) was investigated in fast fatigable, fast resistant and slow motor units (MUs). A standard fatigue test was used in which rhythmically repeated unfused tetani were evoked. The amplitudes of the rise in tension of the first and the last contraction within the unfused tetanus and the amplitudes of accompanying signals in MMG were calculated. For fast fatigable MUs a parallel decrease in the amplitudes of both analysed contractions and in the amplitudes of accompanying MMG signals during the fatigue test was observed. For majority of fast resistant MUs at the beginning of the fatigue test a potentiation occurred and this phenomenon increased the tension of the first contraction and of the peak tetanic tension. However, the potentiation coincided also with a decrease of the amplitude of the last contraction in the tension recording of an unfused tetanus. The MMG reflected both, the increase of amplitude of the first contraction and the decrease of the amplitude of the further contractions within the tetanus. The single twitch contraction evoked immediately before and after the fatigue test was additionally recorded. A decrease (fatigue) or an increase (potentiation) of the twitch tension after the fatigue test was reflected by a decrease or an increase in the amplitude of MMG, respectively. However, the fatigue failed to change significantly the time parameters of MMG. To conclude, fatigue and potentiation can occur during activity of fast MUs and both these phenomena involve changes in the amplitude of oscillations in tension of unfused tetani which are reflected in MMG.  相似文献   

6.
The objective was to investigate muscle fatigue measuring changes in force output and force tremor and electromyographic activity (EMG) during two sustained maximal isometric contractions for 60s: (1) concurrent hand grip and elbow flexion (HG and EF); or (2) hand grip and elbow extension (HG and EE). Each force tremor amplitude was decomposed into four frequency bands (1-3, 4-10, 11-20, and 21-50Hz). Surface EMGs were recorded from the flexor digitorum superficialis (FDS), extensor digitorum (ED), biceps brachii (BB) and lateral head of triceps brachii (TB). The HG and EF forces for the HG and EF and the HG force for the HG and EE declined rapidly, whereas the EE force remained almost constant near to the initial value for the first 40s and then declined. The decrease in EMG amplitude was observed not for the FDS muscle but for the ED muscle. The HG tremor amplitude for each frequency band showed similar decreasing rate, whereas the decreases in EF and EE tremor amplitudes for the lower band (below 10Hz) were slower than those for the higher band (above 11Hz). The neuromuscular mechanisms underlying muscle fatigue during sustained maximal concurrent contractions of hand grip and elbow flexion or extension are discussed.  相似文献   

7.
Phasic organisation of human EEG alpha activity was studied in a pilot investigation using a previously suggested EEG segmental analysis methodology. The EEG was recorded in three normal subjects under resting conditions. The segmentation procedure enabled effective identifying of the periods with different amplitude in alpha band and the short-term transitions between them. Mean intersegmental variability of amplitude envelope were computed for the eyes closed and eyes open EEG in each of 16 standard derivations. Analysis of segment amplitude distributions showed that the difference between the average alpha activity amplitude in these conditions were determined mainly by variations in the number of segments of different amplitude classes and not by a shift of the distribution or by change of its width. Distribution and quartile analysis of mean segment amplitudes provide evidence for possible functional heterogeneity of upper and middle subranges of the amplitude range.  相似文献   

8.
The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.  相似文献   

9.
We imposed opposing oscillations in treadmill speed and grade on nine rats to test for direct mechanical coupling between stride frequency and hindlimb blood flow. Resting hindlimb blood flow was 15.5 +/- 1.7 ml/min. For 90 s at 7.5 m/min, rats alternated walking at -10 degrees for 10 s and +10 degrees for 10 s. This elicited oscillations in hindlimb blood flow having an amplitude of 4.1 +/- 0.5 ml/min (18% of mean flow) with a delay presumably due to metabolic vasodilation. Similar oscillations in speed (5.5-9.5 m/min) elicited oscillations in hindlimb blood flow (amplitude 3.4 +/- 0.5 ml/min, 15% of mean flow) with less of a delay, possibly due to changes in vasodilation and muscle pump function. We then simultaneously imposed these speed and grade oscillations out of phase (slow uphill, fast downhill). The rationale was that the oscillations in vasodilation evoked by the opposing oscillations in speed and grade would cancel each other, thereby testing the degree to which stride frequency affects hindlimb blood flow directly (i.e., muscle pumping). Opposing oscillations in speed and grade evoked oscillations in hindlimb blood flow having an amplitude of 3.3 +/- 0.6 ml/min (16% of mean flow) with no delay and directly in phase with the changes in speed and stride frequency. The finding that hindlimb blood flow changes directly with speed (when vasodilation caused by changes in speed and grade oppose each other) indicates that there is a direct coupling of stride frequency and hindlimb blood flow (i.e., muscle pumping).  相似文献   

10.
To test the hypothesis that muscle sound amplitudes would remain constant during sustained submaximal isometric contractions, we recorded acoustic myograms from the abductor digiti minimi muscle in 12 subjects at 15, 25, 50, and 75% of a maximum voluntary contraction (MVC). Muscle sounds were detected with an omni-directional electret microphone encased in closed-cell foam and attached to the skin over the muscle. Acoustic amplitudes from the middle and end of the sustained contractions were compared with the amplitudes from the beginning of contractions to determine whether acoustic amplitudes varied in magnitude as force remained constant. Physiological tremor was eliminated from the acoustic signal by use of a Fourier truncation at 14 Hz. The amplitudes of the acoustic signal at a contraction intensity of 75% MVC remained constant, reflecting force production over time. At 50% MVC, the root-mean-square amplitude decreased from the beginning to the end of the contraction (P less than 0.05). Acoustic amplitudes increased over time at 15 and 25% MVC and were significantly higher at the end of the contractions than at the beginning (P less than 0.05). Alterations in the acoustic amplitude, which reflect changes in the lateral vibrations of the muscle, may be indicative of the different recruitment strategies used to maintain force during sustained isometric contractions.  相似文献   

11.
This paper reviews two new facets of the behaviour of human motoneurones; these were demonstrated by modelling combined with analysis of long periods of low-frequency tonic motor unit firing (sub-primary range). 1) A novel transformation of the interval histogram has shown that the effective part of the membrane's post-spike voltage trajectory is a segment of an exponential (rather than linear), with most spikes being triggered by synaptic noise before the mean potential reaches threshold. The curvature of the motoneurone's trajectory affects virtually all measures of its behaviour and response to stimulation. The 'trajectory' is measured from threshold, and so includes any changes in threshold during the interspike interval. 2) A novel rhythmic stimulus (amplitude-modulated pulsed vibration) has been used to show that the motoneurone produces appreciable phase-advance during sinusoidal excitation. At low frequencies, the advance increases with rising stimulus frequency but then, slightly below the motoneurones mean firing rate, it suddenly becomes smaller. The gain has a maximum for stimuli at the mean firing rate (the 'carrier'). Such behaviour is functionally important since it affects the motoneurone's response to any rhythmic input, whether generated peripherally by the receptors (as in tremor) or by the CNS (as with cortical oscillations). Low mean firing rates favour tremor, since the high gain and reduced phase advance at the 'carrier' reduce the stability of the stretch reflex.  相似文献   

12.
Secretory periodicity of prolactin (PRL) is preserved in women with breast cancer in spontaneous or surgical menopause. Hormone titres occurring during the day may be occasionally significantly higher in respect to the ones observe in normal controls at the same hours. The periodicity features calculated by the Fourier's method show however normal indices, namely mesor (mean PRL titres in the 24 hours) phase, amplitude and frequency of oscillations.  相似文献   

13.
Dynamic responses of visual cells of the Limulus eye to stimuli of sinusoids and narrow pulses of light superimposed on a nonzero mean level have been obtained. Amplitudes and phase angles of averaged sinusoidal generator potential are plotted with respect to frequency of intensity modulation for different mean levels of light adaptation. At frequencies above 10 CPS, generator potential amplitudes decrease sharply and phase lag angle increases. At frequencies below 1 CPS, amplitude decreases. A maximum of amplitude in the region of 1 to 2 CPS is apparent with increased mean intensity. The generator potential responses are compared with those of differential equation models. Variation of gain with mean intensity for incremental stimuli is consistent with logarithmic sensitivity of the photoreceptor. Frequency response of the photoreceptor derived from narrow pulses of light predicts the frequency response obtained with sinusoidal stimuli, and the photoreceptor is linear for small signals in the light-adapted state.  相似文献   

14.
T Vajda 《Cryobiology》1986,23(3):269-276
Trypsin activity oscillations are shown by the autocatalytic activation of trypsinogen at 0 degrees C in aqueous solution. The oscillations were observed for 3-4 days and show only slight decrease in enzyme activity. The zymogen has been kept at ice water temperature and pH 8.2 in the presence of Mn2+ ion. The mean periods of around 1.5 hr are about half of those found previously at -10 degrees C in frozen aqueous solution, while the amplitudes related to the mean activity are about one-fourth of that in the frozen experiments. The phenomenon of oscillation is interpreted in terms of coupling between the inhomogeneities of protein and ion concentrations of the unstirred solution and a Mn3+/Mn2+ system, causing synchronous, periodic reduction-oxidation of some cystine bridges in the protein chain. These nonequilibrium conditions, together with synchronous transitions among several conformational states, may produce the observed activity oscillations.  相似文献   

15.
A small (28 g) mechanical accelerometer has been tested by subjecting it to controlled bench tests consisting of repetitive vertical oscillations on two designs of test rig. The accelerometer's 3-digit display provided a cumulated score with a maximum of 99.9 units. This score was compared with an independent count of the imposed oscillations and found to be linear with time (r = 0.996) and reproducible on retest (coefficient of variation = +/- 1.5%). The sensitivity ranged from 6.2 to 7.4 units/10,000 oscillations. The response was related to the maximal applied acceleration (calculated from the amplitude and frequency of the oscillations on the assumption that they were sinusoidal) and independent of the amplitude and frequency used. The threshold maximal acceleration was less than 2 m s-2 and the response had reached a plateau at 4 m s-2. During field studies the accelerometer was firmly attached over the hip in a waistband where it responded to the vertical accelerations produced by walking. When compared with an independent count of footsteps from a heel-mounted resistance pad the accelerometer score (after calibration) was not significantly different. The mean difference was (0.29 +/- 0.67, S.D.) 10(3) "steps" in a younger group (n = 8, mean age 39 years) and (0.46 +/- 1.08, S.D.) 10(3) "steps" in an older group of women (n = 6, mean age 65 years). Scores of around 10 X 10(3) "steps" can be expected in a day in moderately active young subjects and 40 X 10(3) "steps" in a week in the elderly. Simultaneously recorded scores from both right and left hips wee not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study quantifies the amplitude variability of the pattern visual evoked potential (P-VEP) and compares this variability (1) between the two eyes and (2) between individual runs recorded in the typical clinical laboratory. Cooperative adults were studied in order to obtain measurements under optimal conditions. Average P100 amplitudes of 10 runs for one eye were essentially equal to average P100 amplitudes of the other eye, as were the variances. Mean amplitude ratio (the smaller amplitude divided by the larger amplitude) was 0.91. With a group mean P100 amplitude of 10.06 μV, standard deviation for intrasubject data was 1.84, and for intersubject data was 3.75. Therefore, most of the amplitude variability between the two eyes is due to run-to-run variability. A minimum of 3 runs (100 stimuli each) and an optimum of 5 runs should be recorded before making an evaluation.  相似文献   

17.
A mathematical method based on computations of residual absolute value sums (RAVS) was developed for the quantitative analysis of tremor-like perturbations of knee angle during the gait cycle. The method was tested on simulation data created by adding sinusoidal tremor of varying frequency and amplitude to the knee-angle graph of a healthy test subject. The method was then applied to compare knee tremor reduction, with and without auditory rhythm, in a group of five traumatically brain-injured patients with gait hemiparesis. Deviations from normal gait performance due to tremor were assessed by using self-comparison to a 17th-degree regression polynomial of each subject's own motion-, time-, and point-normalized knee- angle curve. With rhythmic cueing, the five subjects had a statistically significant RAVS-measured mean tremor reduction of 39.5+/-22.6% (t=-3.91; p=0.017).  相似文献   

18.
Guinea-pigs were anaesthetized at three stages of pregnancy. Intrauterine pressure was recorded for a 1-h control period and during 10-min intravenous infusions of noradrenaline at rates of 1.0 and 10 micrograms/(min X kg). The mean and maximum amplitude of contractions occurring during the infusions was compared with that of contraction cycles registered in the control period. At 18-21 and 35-43 days post coitum, noradrenaline invariably evoked a rapid and sustained rise in intrauterine pressure, the amplitude of the contractions being greater than during spontaneous contraction cycles recorded in the control period. In late pregnancy, 59-68 days p.c., infusion of 1.0 micrograms noradrenaline/(min X kg) failed to elicit a clear response; contractions occurring during infusion of 10 micrograms noradrenaline/(min X kg) had amplitudes similar to those of the control period and were without a sustained contracture. The absence of denervation hypersensitivity, despite the occurrence of sympathetic denervation in the course of pregnancy, may be due to a generalized effect on excitation-contraction coupling, possibly caused by relaxin.  相似文献   

19.
We examined the effect of sudden withdrawal of respiratory oscillations of arterial PCO2 (CO2 oscillations) at resting metabolic rate on the control of respiration in 11 anesthetized paralyzed vagotomized dogs in normoxic normocapnia. A double-lumen endotracheal tube was inserted so that the left and right lungs were ventilated independently. By alternately ventilating each lung, we could completely abolish CO2 oscillations without affecting the mean blood gas levels (withdrawal of CO2 oscillations). The CO2 oscillation was calculated from arterial pH oscillation measured by a rapidly responding intra-arterial pH electrode. Respiratory center output was monitored by use of a moving time average of the phrenic neurogram. A 3-min period of withdrawal of CO2 oscillations was bracketed by two control periods (simultaneous ventilation of lungs for 3 min) to avoid the confounding effect of the baseline drift in the respiratory center output. The amplitude of the CO2 oscillations in the control was 2.33 +/- 0.89 (SD) Torr. When the difference in the mean level of arterial PCO2 between the control and withdrawal of CO2 oscillations was minimized (-0.09 +/- 0.54 Torr; P greater than 0.25), we found negligible change in the minute phrenic activity during withdrawal of CO2 oscillations (-0.02 +/- 6.11% of the control, P greater than 0.98, n = 49; 99% confidence interval -2.36 to 2.32%). Thus we conclude that the maintenance of normal respiration at rest is not critically dependent on a phasic afferent input to the respiratory center arising from respiratory CO2 oscillations.  相似文献   

20.
The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations was studied in the forearm and finger-pad skin of healthy 18- to 25-year-old volunteers. In order to reveal the effects of the divisions of the autonomic nervous system on the amplitudes of respiratory sinus arrhythmia (RSA) and skin blood flow oscillations, we studied the indices of the cardiovascular system in two groups of subjects with respectively lower and higher values of the sympatho-vagal balance. This index was calculated as a ratio of low frequency and high frequency HRV spectral power (LF/HF) under the conditions of spontaneous breathing. It was found that, in subjects with a predominant parasympathetic tone, the amplitudes of RSA and the rate of blood flow in the finger-pad skin were higher compared to subjects with a predominant sympathetic tone during respiration with the frequency lower than 4 cycle/min. In the forearm skin, where sympathetic innervation is weaker compared to the finger-pad skin, there were no significant differences in respiration-dependent oscillations of the rate of blood flow in two groups of subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号