首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha4 integrins are essential for embryogenesis, hematopoiesis, inflammation, and immune response possibly because alpha4 integrins have distinct signaling properties from other integrins. Specifically, the alpha4 cytoplasmic domain binds tightly to paxillin, a signaling adaptor protein, leading to increased cell migration and an altered cytoskeletal organization that results in reduced cell spreading. The alpha4 tail contains potential phosphorylation sites clustered in its core paxillin binding region. We now report that the alpha4 tail is phosphorylated in vitro and in vivo. Furthermore, Ser(988) is a major phosphorylation site. Using antibodies specific for Ser(988)-phosphorylated alpha4, we found the stoichiometry of alpha4 phosphorylation varied in different cells. However, >60% of alpha4 was phosphorylated in Jurkat T cells. Phosphorylation at Ser(988) blocked paxillin binding to the alpha4 tail. A phosphorylation-mimicking mutant of alpha4 (alpha4S988D) blocked paxillin binding and reversed the inhibitory effect of alpha4 on cell spreading. Consequently, alpha4 phosphorylation is a biochemical mechanism to modulate paxillin binding to alpha4 integrins with consequent regulation of alpha4 integrin-dependent cellular functions.  相似文献   

2.
Integrins are heterodimeric transmembrane proteins that mediate substrate adhesion and migration but also the bidirectional transfer of information across the plasma membrane via their cytoplasmic domains. We addressed the question of whether the very short cytoplasmic tail of the alpha1 integrin subunit of alpha1beta1 integrin is required for alpha1beta1-specific adhesion, spreading, and migration. For this purpose we transfected the alpha1 integrin subunit and two cytoplasmically truncated alpha1 subunits into Chinese hamster ovary (CHO) cells. Elimination of the entire cytoplasmic domain of the alpha1 subunit does not affect adhesion but leads to inhibition of spreading and stress fiber formation. The defect in spreading could not be rescued by lysophosphatidic acid, which has been reported to stimulate actin stress fiber formation via Rho. Additionally, deletion of the entire cytoplasmic domain of the alpha1 subunit abolishes migration toward alpha1beta1-specific substrates. Migration and stress fiber formation are similar in CHO-alpha1 cells and CHO cells carrying an alpha1 subunit still containing the conserved GFFKR motif. So, the GFFKR motif of the alpha1 subunit is essential and sufficient for these processes.  相似文献   

3.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

4.
For functional studies of the integrin alpha 4 cytoplasmic domain, we have expressed the following in K562 and Chinese hamster ovary (CHO) cells: 1) wild-type alpha 4 (called X4C4), 2) two chimeric forms of alpha 4 (called X4C2 and X4C5) that contain the cytoplasmic domains of alpha 2 and alpha 5, respectively, and 3) alpha 4 with no cytoplasmic domain (X4C0). Cytoplasmic domain exchange had no effect on VLA-4-dependent static cell adhesion or tethering to VCAM-1 in conditions of shear flow. However, the presence of the alpha 2 or alpha 5 tails markedly enhanced VLA-4-dependent K562 cells spreading (X4C2 > X4C5 > X4C4 > X4C0), increased localization of VLA-4 into focal adhesion-like complexes in CHO cells (X4C2 > X4C5 > X4C4), and strengthened CHO and K562 cell resistance to detachment from VCAM-1 in conditions of shear flow (X4C2 > X4C5 > X4C4 > X4C0). Conversely, the alpha 4 tail supported greater VLA-4-dependent haptotactic and chemotactic cell migration. In the absence of any alpha tail (i.e., X4C0), robust focal adhesions were observed, even though cell spreading and adhesion strengthening were minimal. Thus, such focal adhesions may have relatively little functional importance, and should not be compared with focal adhesions formed when alpha tails are present. Together, these results indicate that all three alpha-chain tails exert defined positive effects (compared with no tail at all), but suggest that the alpha 4 cytoplasmic domain may be specialized to engage in weaker cytoskeletal interactions, leading to diminished focal adhesion formation, cell spreading, and adhesion strengthening, while augmenting cell migration and facilitating rolling under shear flow. These properties of the alpha 4 tail are consistent with the role of alpha 4 integrins on highly motile lymphocytes, monocytes, and eosinophils.  相似文献   

5.
Talin links integrin beta cytoplasmic domains to the actin cytoskeleton and is involved in the clustering and activation of these receptors. To understand how talin recognizes integrin beta cytoplasmic domains, we configured surface plasmon resonance methodology to measure the interaction of talin with the beta3 integrin cytoplasmic domain. Here we report that the N-terminal approximately 47-kDa talin head domain (talin-H) has a 6-fold higher binding affinity than intact talin for the beta3 tail. The affinity difference is mainly due to a difference in k(on). Calpain cleavage of intact talin released talin-H and resulted in a 16-fold increase in apparent K(a) and a 100-fold increase in apparent k(on). The increase in talin binding after cleavage was greater than predicted for stoichiometric liberation of free talin-H. This additional increase in binding was due to cooperative binding of talin-H and talin rod domain to the beta3 tail. Talin resembles ERM (ezrin, radixin, moesin) proteins in possessing an N-terminal FERM (band four-point-one, ezrin, radixin, moesin) domain. These data show that the talin FERM domain, like that in the ERM proteins, is masked in the intact molecule. Furthermore, they suggest that talin cleavage by calpain may contribute to the effects of the protease on the clustering and activation of integrins.  相似文献   

6.
Previous evidence suggests that interactions between integrin cytoplasmic domains regulate integrin activation. We have constructed and validated recombinant structural mimics of the heterodimeric alpha(IIb)beta(3) cytoplasmic domain. The mimics elicited polyclonal antibodies that recognize a combinatorial epitope(s) formed in mixtures of the alpha(IIb) and beta(3) cytoplasmic domains but not present in either isolated tail. This epitope(s) is present within intact alpha(IIb)beta(3), indicating that interaction between the tails can occur in the native integrin. Furthermore, the combinatorial epitope(s) is also formed by introducing the activation-blocking beta(3)(Y747A) mutation into the beta(3) tail. A membrane-distal heptapeptide sequence in the alpha(IIb) tail ((997)RPPLEED) is responsible for this effect on beta(3). Membrane-permeant palmitoylated peptides, containing this alpha(IIb) sequence, specifically blocked alpha(IIb)beta(3) activation in platelets. Thus, this region of the alpha(IIb) tail causes the beta(3) tail to resemble that of beta(3)(Y747A) and suppresses activation of the integrin.  相似文献   

7.
M V Rojiani  B B Finlay  V Gray  S Dedhar 《Biochemistry》1991,30(41):9859-9866
We endeavored to identify proteins interacting with KLGFFKR, a highly conserved motif in the cytoplasmic domain adjacent to the transmembrane domain of the alpha subunit of integrins. We found that affinity chromatography of cell extracts with this peptide followed by elution with EDTA resulted in the isolation of a 60-kDa protein (p60). The N-terminal amino acid sequence of this 60-kDa polypeptide was found to be highly homologous to the Ro/SS-A antigen, a 60-kDa protein homologous to calreticulin and Aplysia "memory molecule". The binding of p60 was found to be specific for the KLGFFKR sequence since this polypeptide did not bind to a peptide with a scrambled amino acid sequence (KLRFGFK), and it was also specifically eluted from the KLGFFKR affinity matrix ith soluble KLGFFKR peptide but not with the scrambled peptide. Solid phase in vitro binding assays demonstrated specific interaction of p60 with integrin alpha 3 and alpha 5 subunits but not with the beta 1 subunit. Furthermore, p60 could be copurified with alpha 3 beta 1 following coincubation in vitro. These interactions could be inhibited by KLGFFKR peptide and also by EDTA, indicating sequence-specific and divalent cation dependent binding. Despite the fact that calreticulin is thought to be localized in the endoplasmic reticulum, a pool of Ro/SS A antigen homologous 60-kDa polypeptide was found to be present in the soluble cytoplasm, indicating the feasibility of an interaction of p60 with the integrin alpha subunits. Our data suggest that p60 (Ro/SS-A Ag) can specifically bind to integrin alpha subunits via the highly conserved KLGFFKR amino acid sequence.  相似文献   

8.
Cdc37 is a molecular chaperone that is important for the stability and activity of several protein kinases, including Cdk4 and Raf1. We first determined, using in vitro assays, that Cdc37 binds to the amino-terminal lobe of Cdk4. Subsequent mutagenesis revealed that Gly-15 (G15A) and Gly-18 (G18A) were critical for Cdc37-Cdk4 complex formation. Gly-15 and Gly-18 of Cdk4 are within the conserved Gly-X-Gly-X-X-Gly motif that is required for ATP binding to the kinase. Mutation of either glycine at the equivalent positions of Raf1 (G358A and G361A) also inhibited Cdc37 binding to Raf1. Replacing another conserved residue critical for ATP binding and kinase activity, Lys-35 (K35A), reduced Cdc37-Cdk4 complex formation but to a lesser extent. The interaction of Cdk4 with Cdc37 in vitro was not sensitive to changes in ATP levels. Cell-based assays indicated that Cdk4(G15A) and Cdk4(G18A) were present at the same level as wild type Cdk4. Equivalent amounts of p16 bound to Cdk4(G15A) and Cdk4(G18A) relative to wild type Cdk4, suggesting that Cdk4(G15A) and Cdk4(G18A) adopt significant tertiary structure. However, in contrast to wild type Cdk4, Cdk4(G15A), and Cdk4(G18A) had greatly reduced binding of cyclin D1, Cdc37, and Hsp90. Importantly, overexpression of Cdc37 not only stimulated cyclin D1 binding to wild type Cdk4 but also restored its binding to Cdk4(G15A). Under the same conditions, p16 binding to wild type Cdk4 was suppressed. Our findings show that the interaction of Cdc37 with its client protein kinases requires amino acid residues within a motif that is present in many protein kinases.  相似文献   

9.
Proliferating cell nuclear antigen (PCNA) has recently been identified as a target for the binding of several proteins. The cell cycle regulatory protein, p21, and the replication endonuclease, Fen1, have already been described as competing for PCNA binding. Two recent reports have identified DNA (cytosine-5)methyltransferase (MCMT) and the DNA repair endonuclease XPG as binding to PCNA.1,2 The remarkable thing about these interactions is that they all seem to occur through a conserved motif that is likely to contact the same site on PCNA. This has fascinating implications for a regulatory network linking these diverse protein functions. BioEssays 20 :195–199, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

10.
ADAMs (a disintegrin and metalloproteases) are members of the metzincin superfamily of metalloproteases. Among integrins binding to disintegrin domains of ADAMs are alpha(9)beta(1) and alpha(v)beta(3), and they bind in an RGD-independent and an RGD-dependent manner, respectively. Human ADAM15 is the only ADAM with the RGD motif in the disintegrin domain. Thus, both integrin alpha(9)beta(1) and alpha(v)beta(3) recognize the ADAM15 disintegrin domain. We determined how these integrins recognize the ADAM15 disintegrin domain by mutational analysis. We found that the Arg(481) and the Asp-Leu-Pro-Glu-Phe residues (residues 488-492) were critical for alpha(9)beta(1) binding, but the RGD motif (residues 484-486) was not. In contrast, the RGD motif was critical for alpha(v)beta(3) binding, but the other residues flanking the RGD motif were not. As the RX(6)DLPEF alpha(9)beta(1) recognition motif (residues 481-492) is conserved among ADAMs, except for ADAM10 and 17, we hypothesized that alpha(9)beta(1) may recognize disintegrin domains in all ADAMs except ADAM10 and 17. Indeed we found that alpha(9)beta(1) bound avidly to the disintegrin domains of ADAM1, 2, 3, and 9 but not to the disintegrin domains of ADAM10 and 17. As several ADAMs have been implicated in sperm-oocyte interaction, we tested whether the functional classification of ADAMs, based on specificity for integrin alpha(9)beta(1), applies to sperm-egg binding. We found that the ADAM2 and 15 disintegrin domains bound to oocytes, but the ADAM17 disintegrin domain did not. Furthermore, the ADAM2 and 15 disintegrin domains effectively blocked binding of sperm to oocytes, but the ADAM17 disintegrin domain did not. These results suggest that oocytes and alpha(9)beta(1) have similar binding specificities for ADAMs and that alpha(9)beta(1), or a receptor with similar specificity, may be involved in sperm-egg interaction during fertilization. As alpha(9)beta(1) is a receptor for many ADAM disintegrins and alpha(9)beta(1) and ADAMs are widely expressed, alpha(9)beta(1)-ADAM interaction may be of a broad biological importance.  相似文献   

11.
The alpha(4) integrins play important roles in embryogenesis, hematopoiesis, cardiac development, and the immune responses. The alpha(4) integrin subunit is indispensable for these biological processes, possibly because the alpha(4) subunit regulates cellular functions differently from other integrin alpha subunits. We have previously reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule, and this interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion. We also have identified a conserved 9-amino acid region (Glu(983)-Tyr(991)) in the alpha(4) cytoplasmic domain that is sufficient for paxillin binding, and an alanine substitution at either Glu(983) or Tyr(991) within this region disrupted the alpha(4)-paxillin interaction and reversed the effects of the alpha(4) cytoplasmic domain on cell spreading and migration. In the current study, we have mapped the alpha(4)-binding site within paxillin using mutational analysis, and examined its effects on the alpha(4) tail-mediated functional responses. Here we report that sequences between residues Ala(176) and Asp(275) of paxillin are sufficient for binding to the alpha(4) tail. We found that the alpha(4) tail, paxillin, and FAT, the focal adhesion targeting domain of pp125(FAK), could form a ternary complex and that the alpha(4)-binding paxillin fragment, P(Ala(176)-Asp(275)), specifically blocked paxillin binding to the alpha(4) tail more efficiently than it blocked binding to FAT. Furthermore, when expressed in cells, this alpha(4)-binding paxillin fragment specifically inhibited the alpha(4) tail-stimulated cell migration. Thus, paxillin binding to the alpha(4) tail leads to enhanced cell migration and inhibition of the alpha(4)-paxillin interaction selectively blocks the alpha4-dependent cellular responses.  相似文献   

12.
The family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3′‐untranslated region (3′‐UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C‐terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain. Our structural data provide important information about the RNA binding ability of CPEB3 RRM1. Proteins 2014; 82:2879–2886. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Modification of the cytoplasmic tails of the integrin alpha(IIb)beta(3) plays an important role in the signal transduction in platelets. We searched for proteins that bind to the alpha(IIb) cytoplasmic tail using the yeast two-hybrid assay with a cDNA library of the megakaryocyte-derived cell line and identified a protein, ancient ubiquitous protein 1 (Aup1), that is ubiquitously expressed in human cells. Observation of UT7/TPO cells expressing a red fluorescent protein-tagged Aup1 indicated its localization in the cytoplasm. Immunoprecipitation of UT7/TPO cells by an antibody for Aup1 revealed that approximately 40% of alpha(IIb) is complexed with Aup1. Binding study with an alpha(IIb) cytoplasmic tail peptide and glutathione S-transferase-Aup1 fusion protein revealed a low affinity (K(d) = 90 microm). Subsequent yeast two-hybrid assay indicated binding of Aup1 to cytoplasmic tails of other integrin alpha subunits. Binding study with the purified Aup1 and various glutathione S-transferase-alpha(IIb) cytoplasmic tail peptides revealed specific binding of Aup1 to the membrane-proximal sequence (KVGFFKR) that is conserved among the integrin alpha subunits and plays a crucial role in the alpha(IIb)beta(3) inside-out signaling. As Aup1 possesses domains related to signal transduction, these results suggest involvement of Aup1 in the integrin signaling.  相似文献   

14.
Alpha1,6-fucosyltransferase catalyzes the transfer of fucose to the innermost GlcNAc residue of an N-linked oligosaccharide. In order to identify the amino acid residue(s) which are associated with the enzyme activity and to investigate their function, we prepared a series of mutant human alpha1,6-fucosyltransferases in which the conserved residues in the region homologous to alpha1,2-fucosyltransferase had been replaced. These proteins were then characterized by kinetic analyses. The wild-type and mutant alpha1,6-fucosyltransferases were expressed using a baculovirus-insect cell system. The activity assay showed that replacement of Arg-365 by Ala or Lys led to a complete loss of activity while substitution of Ala or Lys for the neighboring Arg-366 decreased the activity to about 3% that of the wild type. Kinetic analyses revealed that the replacements of Arg-366 lead to an increase in the apparent K (m) value for both GDP-fucose and the acceptor oligosaccharide but did not markedly affect the apparent V (max). When these mutants were inhibited by GDP in a competitive manner with respect to the donor substrate, the K (i) values were found to be 50-100 times higher than the value in the wild type. On the other hand, in the inhibition by GMP, the K (i) values for the mutants were very similar to that of the wild type. These findings suggest that Arg-366 contributes to the binding of GDP-fucose via an interaction with the beta-phosphoryl group of the GDP moiety of the donor, and that Arg-365 may also play an essential role in substrate binding. The results suggest that the motif common to alpha1,2- and alpha1,6-fucosyltransferases is critical for binding of the donor substrate, GDP-fucose.  相似文献   

15.
Integrin alpha 3A cytoplasmic tail phosphorylation was mapped to amino acid S1042, as determined by mass spectrometry, and confirmed by mutagenesis. This residue occurs within a "QPSXXE" motif conserved in multiple alpha chains (alpha 3A, alpha 6A, alpha 7A), from multiple species. Phosphorylation of alpha 3A and alpha 6A did not appear to be directly mediated by protein kinase C (PKC) alpha, beta, gamma, delta, epsilon, zeta, or mu, or by any of several other known serine kinases, although PKC has an indirect role in promoting phosphorylation. A S1042A mutation did not affect alpha 3-Chinese hamster ovary (CHO) cell adhesion to laminin-5, but did alter 1) alpha 3-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin (in the presence or absence of phorbol 12-myristate 13 acetate stimulation), and p130(CAS) (in the absence of phorbol 12-myristate 13 acetate stimulation), 2) the shape of cells spread on laminin-5, and 3) alpha 3-dependent random CHO cell migration on laminin-5. In addition, S1042A mutation altered the PKC-dependent, ligand-dependent subcellular distribution of alpha 3 and F-actin in CHO cells. Together, the results demonstrate clearly that alpha 3A phosphorylation is functionally relevant. In addition, the results strongly suggest that alpha 3 phosphorylation may regulate alpha 3 integrin interaction with the cytoskeleton.  相似文献   

16.
The alpha 6 beta 4 integrin is structurally distinct from all the other known integrins because the cytoplasmic domain of beta 4 is unusually large and contains four type III fibronectin-like modules toward its C-terminus. To examine the function of the beta 4 cytoplasmic tail, we have expressed full-length and truncated human beta 4 cDNAs in rat bladder epithelial 804G cells, which form hemidesmosome-like adhesions in vitro. The cDNA encoded wild-type beta 4 subunit associated with endogenous alpha 6 and was recruited at the cell surface within hemidesmosome-like adhesions. A recombinant form of beta 4, lacking almost the entire cytoplasmic domain associated with alpha 6, reached the cell surface but remained diffusely distributed. A beta 4 molecule lacking almost the entire extracellular portion did not associate with alpha 6 but was correctly targeted to the hemidesmosome-like adhesions. Thus, the cytoplasmic portion of beta 4 contains sequences that are required and may be sufficient for the assembly of the alpha 6 beta 4 integrin into hemidesmosomes. To localize these sequences we examined the properties of additional mutant forms of beta 4. A truncated beta 4 subunit, lacking the most C-terminal pair of type III fibronectin homology domains, was incorporated into hemidesmosome-like adhesions, but another recombinant beta 4 molecule, lacking both pairs of type III fibronectin repeats, was not. Finally a recombinant beta 4 molecule, which was created by adjoining the region of the cytoplasmic domain including all type III repeats to the transmembrane segment, was efficiently recruited in hemidesmosome-like adhesions. Taken together these results suggest that the assembly of the alpha 6 beta 4 integrin into hemidesmosomes is mediated by a 303-amino acid region of beta 4 tail that comprises the first pair of type III fibronectin repeats and the segment between the second and third repeats. These data imply a function of a specific segment of the beta 4 cytoplasmic domain in interaction with cytoskeletal components of hemidesmosomes.  相似文献   

17.
Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC alpha) activity. Syndecan 4V peptide directly potentiates PKC alpha activity, leading to "superactivation" of the enzyme, apparently through an interaction with its catalytic domain. We now have performed yeast two-hybrid and in vitro binding assays to determine the interaction sites between 4V and PKC alpha. Full-length PKC alpha weakly interacted with 4V by yeast two-hybrid assays, but PKC alpha constructs that lack the pseudosubstrate region or constructs of the whole catalytic domain interacted more strongly. A mutated 4V sequence (4V(YF): LGKKPIFKK) did not interact with PKC alpha, indicating that tyrosine 192 in the syndecan-4 cytoplasmic domain might be critical for this interaction. Further assays identified a novel interaction site in the C terminus of the catalytic domain of PKC alpha (amino acid sequence 513-672). This encompasses the autophosphorylation sites, which are implicated in activation and stability. Yeast two-hybrid data were confirmed by in vitro binding and coimmunoprecipitation assays. The interaction of syndecan-4 with PKC alpha appears unique since PKC delta and epsilon did not interact with 4V in yeast two-hybrid assays or coimmunoprecipitate with syndecan-4. Finally, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase.  相似文献   

18.
Plectin is a major component of the cytoskeleton and links the intermediate filament system to hemidesmosomes by binding to the integrin beta4 subunit. Previously, a binding site for beta4 was mapped on the actin-binding domain (ABD) of plectin and binding of beta4 and F-actin to plectin was shown to be mutually exclusive. Here we show that only the ABDs of plectin and dystonin bind to beta4, whereas those of other actin-binding proteins do not. Mutations of the ABD of plectin-1C show that Q131, R138, and N149 are critical for tight binding of the ABD to beta4. These residues form a small cavity, occupied by a well-ordered water molecule in the crystal structure. The beta4 binding pocket partly overlaps with the actin-binding sequence 2 (ABS2), previously shown to be essential for actin binding. Therefore, steric interference may render binding of beta4 and F-actin to plectin mutually exclusive. Finally, we provide evidence indicating that the residues preceding the ABD in plectin-1A and -1C, although unable to mediate binding to beta4 themselves, modulate the binding activity of the ABD for beta4. These studies demonstrate the unique property of the plectin-ABD to bind to both F-actin and beta4, and explain why several other ABD-containing proteins that are expressed in basal keratinocytes are not recruited into hemidesmosomes.  相似文献   

19.
Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1).  相似文献   

20.
The type III connecting segment of fibronectin contains two cell binding sites, represented by the peptides CS1 and CS5, that are recognized by the integrin receptor alpha 4 beta 1. Using assays measuring the spreading of A375-SM human melanoma cells, we now report that the adhesion promoting activity of a 29 kDa protease fragment of fibronectin containing the COOH-terminal heparin-binding domain (HepII), but lacking CS1 and CS5, is completely sensitive to anti-alpha 4 and anti-beta 1 antibodies, suggesting that HepII contains a third alpha 4 beta 1-binding sequence. Examination of the primary structure of HepII revealed a sequence with homology to CS1. A 19mer peptide spanning this region (designated H1) was found to support cell spreading to the same level as the 29 kDa fragment. H1-dependent adhesion was completely sensitive to anti-alpha 4 and anti-beta 1 antibodies. When soluble peptides were tested for their ability to block cell spreading on the 29 kDa fragment, a 13mer peptide comprising the central core of H1 was found to be completely inhibitory. The active region of H1 was localized to the pentapeptide IDAPS, which is homologous to LDVPS from the active site of CS1. Taken together, these results identify a novel peptide sequence in the HepII region of fibronectin that supports alpha 4 beta 1-dependent cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号