首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xie X  Jhaveri KA  Ding M  Hughes LF  Toth LA  Ramkumar V 《Life sciences》2007,81(13):1031-1041
The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R is differentially regulated by nuclear factor-kappaB (NF-kappaB). In this report, we determined the role of NF-kappaB in regulation of these receptors by comparing mice deficient in the NF-kappaB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [(3)H]-methylspiperone binding than did striata from F2 mice. G(alphaolf) and G(alphas) proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the G(alphai1) protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50 KO mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NF-kappaB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine.  相似文献   

2.
There is evidence for strong functional antagonistic interactions between adenosine A2A receptors (A2ARs) and dopamine D2 receptors (D2Rs). Although a close physical interaction between both receptors has recently been shown using co-immunoprecipitation and co-localization assays, the existence of a A2AR-D2R protein-protein interaction still had to be demonstrated in intact living cells. In the present work, fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques were used to confirm the occurrence of A2AR-D2R interactions in co-transfected cells. The degree of A2AR-D2R heteromerization, measured by BRET, did not vary after receptor activation with selective agonists, alone or in combination. BRET competition experiments were performed using a chimeric D2R-D1R in which helices 5 and 6, the third intracellular loop (I3), and the third extracellular loop (E3) of the D2R were replaced by those of the dopamine D1 receptor (D1R). Although the wild type D2R was able to decrease the BRET signal, the chimera failed to achieve any effect. This suggests that the helix 5-I3-helix 6-E3 portion of D2R holds the site(s) for interaction with A2AR. Modeling of A2AR and D2R using a modified rhodopsin template followed by molecular dynamics and docking simulations gave essentially two different possible modes of interaction between D2R and A2AR. In the most probable one, helix 5 and/or helix 6 and the N-terminal portion of I3 from D2R approached helix 4 and the C-terminal portion of the C-tail from the A2AR, respectively.  相似文献   

3.
Adenosine signaling has been implicated in the pathophysiology of alcohol use disorders and other psychiatric disorders such as anxiety and depression. Numerous studies have indicated a role for A1 receptors (A1R) in acute ethanol-induced motor incoordination, while A2A receptors (A2AR) mainly regulate the rewarding effect of ethanol in mice. Recent findings have demonstrated that dampened A2AR-mediated signaling in the dorsomedial striatum (DMS) promotes ethanol-seeking behaviors. Moreover, decreased A2AR function is associated with decreased CREB activity in the DMS, which enhances goal-oriented behaviors and contributes to excessive ethanol drinking in mice. Interestingly, caffeine, the most commonly used psychoactive substance, is known to inhibit both the A1R and A2AR. This dampened adenosine receptor function may mask some of the acute intoxicating effects of ethanol. Furthermore, based on the fact that A2AR activity plays a role in goal-directed behavior, caffeine may also promote ethanol-seeking behavior. The A2AR is enriched in the striatum and exclusively expressed in striatopallidal neurons, which may be responsible for the regulation of inhibitory behavioral control over drug rewarding processes through the indirect pathway of the basal ganglia circuit. Furthermore, the antagonistic interactions between adenosine and dopamine receptors in the striatum also play an integral role in alcoholism and addiction-related disorders. This review focuses on regulation of adenosine signaling in striatal circuits and the possible implication of caffeine in goal-directed behaviors and addiction.  相似文献   

4.
The optically pure enantiomers of the potential atypical antipsychotic agents 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 5) and 5-methoxy-2-{N-[2-(2,6-dimethoxy)benzamidoethyl]-N-n-propylamino}t etralin [5-OMe-(2,6-di-OMe)-BPAT, 6] were synthesized and evaluated for their in vitro binding affinities at alpha1-, alpha2-, and beta-adrenergic, muscarinic, dopamine D1, D2A, and D3, and serotonin 5-HT1A and 5-HT2 receptors. In addition, their intrinsic efficacies at serotonin 5-HT1A receptors were established in vitro. (S)- and (R)-5 had high affinities for dopamine D2A, D3, and serotonin 5-HT1A receptors, moderate affinities for alpha1-adrenergic and serotonin 5-HT2 receptors, and no affinity (Ki > 1000 nM) for the other receptor subtypes. (S)- and (R)-6 had lower affinities for the dopamine D2A and the serotonin 5-HT1A receptor, compared to (S)- and (R)-5, and hence showed some selectivity for the dopamine D3 receptor. The interactions with the receptors were stereospecific, since the serotonin 5-HT1A receptor preferred the (S)-enantiomers, while the dopamine D2A and D3 receptors preferred the (R)-enantiomers of 5 and 6. The intrinsic efficacies at the serotonin 5-HT1A receptor were established by measuring their ability to inhibit VIP-induced cAMP production in GH4ZD10 cells expressing serotonin 5-HT1A receptors. Both enantiomers of 5 behaved as full serotonin 5-HT1A receptor agonists in this assay, while both enantiomers of 6 behaved as weak partial agonists. The potential antipsychotic properties of (S)- and (R)-5 were evaluated by establishing their ability to inhibit d-amphetamine-induced locomotor activity in rats, while their propensity to induce extrapyramidal side-effects (EPS) in man was evaluated by determining their ability to induce catalepsy in rats. Whereas (R)-5 was capable of blocking d-amphetamine-induced locomotor activity, indicative of dopamine D2 receptor antagonism, (S)-5 even enhanced the effect of d-amphetamine, suggesting that this compound has dopamine D2 receptor-stimulating properties. Since both enantiomers also were devoid of cataleptogenic activity, they are interesting candidates for further exploring the dopamine D2/serotonin 5-HT1A hypothesis of atypical antipsychotic drug action.  相似文献   

5.
A number of adenosine analogues substituted in the 2- and N6-positions were synthesized and evaluated for affinity, functional potency and intrinsic activity at the A1 and A2A adenosine receptors (AR). Three classes of N6-substituents were tested; norbornen-2-yl (series 1), norborn-2-yl (series 2) and 5,6-epoxynorborn-2-yl (series 3). The halogens; fluoro, bromo, and iodo were evaluated as C-2 substituents. All compounds showed relatively high affinity (nanomolar) for the A1AR and high potency for inhibiting (-)isoproterenol-stimulated cAMP accumulation in hamster smooth muscle DDT1 MF-2 cells with the 2-fluoro derivatives from each series having the highest affinity. All of the derivatives showed the same intrinsic activity as CPA. At the A2AAR, all of the derivatives showed relatively low affinity and potency (micromolar) for stimulating cAMP accumulation in rat pheochromocytoma PC-12 cells. The intrinsic activity of the derivatives compared to CGS 21680 was dependent upon the halogen substituent in the C-2 position with most showing partial agonist activity. Of particular interest is 2-iodo-N6-(2S-endo-norborn-2-yl)adenosine (5e), which is over 100-fold selective for the A1AR, is a full agonist at this receptor subtype and has no detectable agonist activity at the A2AAR.  相似文献   

6.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

7.
It is proposed that the moonlighting concept can be applied to G protein coupled receptors (GPCRs) as, obviously, they can carry out different types of functions. The same motifs in, for example, the third intracellular loop, can moonlight by switching between receptor-receptor interactions and interactions with signaling proteins such as G proteins or calmodulin. A "guide-and-clasp" manner of receptor-receptor interactions has been proposed where the "adhesive guides" may be the triplet homologies. As an example, the triplets AAR (or RAA) and AAE (or EAA) homologies in A(2A) R-D2 R heteromers may guide-and-clasp binding not only of the two protomers but also of calmodulin and G(i) . A beautiful moonlighting phenomenon in the A(2A) R-D2 R heteromer is that the positively charged D2 R N-terminal third intracellular loop epitope (VLRRRRKRVN) may switch between bindings to the negatively charged A(2A) R epitope (SAQEpSQGNT), localized in the medium segment of the C terminus of the A2A receptor to several negative epitopes of calmodulin. Furthermore, overlapping motifs may favor moonlighting to G(i/o) via inter alia electrostatic interaction between triplets AAR(in D2 R third intracellular loop) and AAE (G(i/alpha1) ) (and/or their symmetric variants) contributing to guide-and-clasp D2 R-G(i) interactions Thus, moonlighting in GPCR heteromers can take place via allosteric receptor-receptor interactions and is also described in D1 R-D2 R, D2 R-5-HT2 R,and A1 R-P2Y1 heteromers. Allosteric receptor-receptor interactions in GPCR-receptor tyrosine kinases (RTKs) heteromers and postulated ion channel receptor-RTK heteromers-like, for example, AMPA-NMDA-TrkB heteromers may lead to moonlighting of the participating GPCR and RTK protomers altering, for example, the pattern of the five major signaling pathways of the RTKs favoring MAPK and/or mTOR signaling with high relevance for neurodegenerative processes and depression induced atrophy of neurons. Moonlighting may also develop in the intracellular loops and C-terminal of the GPCRs as a result of dynamic allosteric interactions between different types of G proteins and other receptor interacting proteins in these domains of the receptor.  相似文献   

8.
Adenosine can influence dopaminergic neurotransmission in the basal ganglia via postsynaptic interaction between adenosine A2A and dopamine D2 receptors. We have used a human neuroblastoma cell line (SH-SY5Y) that was found to express constitutively moderate levels of adenosine A1 and A2A receptors (approximately 100 fmol/mg of protein) to investigate the interactions of A2A/D2 receptors, at a cellular level. After transfection with human D2L receptor cDNA, SH-SY5Y cells expressed between 500 and 1,100 fmol of D2 receptors/mg of protein. In membrane preparations, stimulation of adenosine A2A receptors decreased the affinity of dopamine D2 receptors for dopamine. In intact cells, the calcium concentration elevation induced by KCI treatment was moderate, and dopamine had no effect on either resting intracellular free Ca2+ concentration ([Ca2+]i) or KCI-induced responses. In contrast, pretreatment with adenosine deaminase for 2 days dramatically increased the elevation of [Ca2+]i evoked by KCI, which then was totally reversed by dopamine. The effects induced by 48-h adenosine inactivation were mimicked by application of adenosine A1 antagonists and could not be further reversed by acute activation of either A1 or A2A receptors. Acute application of the selective A2 receptor agonist CGS-21680 counteracted the D2 receptor-induced [Ca2+]i responses. The present study shows that SH-SY5Y cells are endowed with functional adenosine A2A and A1 receptors and that A2A receptors exert an antagonistic acute effect on dopamine D2 receptor-mediated functions. In contrast, A1 receptors induce a tonic modulatory role on these dopamine functions.  相似文献   

9.
Antagonistic and reciprocal interactions are known to exist between adenosine and dopamine receptors in the striatum. In the present study, double immunofluorescence experiments with confocal laser microscopy showed a high degree of colocalization of adenosine A(2A) receptors (A(2A)R) and dopamine D(2) receptors (D(2)R) in cell membranes of SH-SY5Y human neuroblastoma cells stably transfected with human D(2)R and in cultured striatal cells. A(2A)R/D(2)R heteromeric complexes were demonstrated in coimmunoprecipitation experiments in membrane preparations from D(2)R-transfected SH-SY5Y cells and from mouse fibroblast Ltk(-) cells stably transfected with human D(2)R (long form) and transiently cotransfected with the A(2A)R double-tagged with hemagglutinin. Long term exposure to A(2A)R and D(2)R agonists in D(2)R-cotransfected SH-SY5Y cells resulted in coaggregation, cointernalization and codesensitization of A(2A)R and D(2)R. These results give a molecular basis for adenosine-dopamine antagonism at the membrane level and have implications for treatment of Parkinson's disease and schizophrenia, in which D(2)R are involved.  相似文献   

10.
Adenosine and caffeine modulate locomotor activity and striatal gene expression, partially through the activation and blockade of striatal A(2A) receptors, respectively. The elucidation of the roles of these receptors benefits from the construction of A(2A) receptor-deficient mice (A(2A)-R(-/-)). These mice presented alterations in locomotor behaviour and striatal expression of genes studied so far, which are unexpected regarding the specific expression of A(2A) receptor by striatopallidal neurones. To clarify the functions of A(2A) receptors in the striatum and to identify the mechanisms leading to these unexpected modifications, we studied the basal expression of immediate early and constitutive genes as well as dopamine and glutamate neurotransmission in the striatum. Basal zif268 and arc mRNAs expression was reduced in mutant mice by 60-80%, not only in the striatum but also widespread in the cerebral cortex and hippocampus. Striatal expression of substance P and enkephalin mRNAs was reduced by about 50% and 30%, respectively, whereas the expression of GAD67 and GAD65 mRNAs was slightly increased and unaltered, respectively. In vivo microdialysis in the striatum revealed a 45% decrease in the extracellular dopamine concentration and three-fold increase in extracellular glutamate concentration. This was associated with an up-regulation of D(1) and D(2) dopamine receptors expression but not with changes in ionotropic glutamate receptors. The levels of tyrosine hydroxylase and of striatal and cortical glial glutamate transporters as well as adenosine A(1) receptors expression were indistinguishable between A(2A)-R(-/-) and wild-type mice. Altogether these results pointed out that the lack of A(2A) receptors leads to a functional hypodopaminergic state and demonstrated that A(2A) receptors are necessary to maintain a basal level in immediate early and constitutive genes expression in the striatum and cerebral cortex, possibly via their control of dopamine pathways.  相似文献   

11.
12.
Silkis I 《Bio Systems》2001,59(1):7-14
A possible mechanism underlying the modulatory role of dopamine, adenosine and acetylcholine in the modification of corticostriatal synapses, subsequent changes in signal transduction through the "direct" and "indirect" pathways in the basal ganglia and variations in thalamic and neocortical cell activity is proposed. According to this mechanism, simultaneous activation of dopamine D1/D2 receptors as well as inactivation of adenosine A1/A(2A) receptors or muscarinic M4/M1 receptors on striatonigral/striatopallidal inhibitory cells can promote the induction of long-term potentiation/depression in the efficacy of excitatory cortical inputs to these cells. Subsequently augmented inhibition of the activity of inhibitory neurons of the output nuclei of the basal ganglia through the "direct" pathway together with reduced disinhibition of these nuclei through the "indirect" pathway synergistically increase thalamic and neocortical cell firing. The proposed mechanism can underlie such well known effects as "excitatory" and "inhibitory" influence of dopamine on striatonigral and striatopallidal cells, respectively; the opposite action of dopamine and adenosine on these cells; antiparkinsonic effects of dopamine receptor agonists and adenosine or acetylcholine muscarinic receptor antagonists.  相似文献   

13.
β-Adrenergic receptors (βAR) and D(2)-like dopamine receptors (which include D(2)-, D(3)- and D(4)-dopamine receptors) activate G(s) and G(i), the stimulatory and inhibitory heterotrimeric G proteins, respectively, which in turn regulate the activity of adenylyl cyclase (AC). β(2)-Adrenergic receptors (β(2)AR) and D(4)-dopamine receptors (D(4)DR) co-immunoprecipitated when co-expressed in HEK 293 cells, suggesting the existence of a signaling complex containing both receptors. In order to determine if these receptors are closely associated with each other, and with other components involved in G protein-mediated signal transduction, β(2)AR, D(4)DR, G protein subunits (Gα(i1) and the Gβ(1)γ(2) heterodimer) and AC were tagged so that bioluminescence resonance energy transfer (BRET) could be used to monitor their interactions. All of the tagged proteins retained biological function. For the first time, FlAsH-labeled proteins were used in BRET experiments as fluorescent acceptors for the energy transferred from Renilla luciferase-tagged donor proteins. Our experiments revealed that β(2)AR, D(4)DR, G proteins and AC were closely associated in a functional signaling complex in cellulo. Furthermore, BRET experiments indicated that although activation of G(i) caused a conformational change within the heterotrimeric protein, it did not cause the Gβγ heterodimer to dissociate from the Gα(i1) subunit. Evidence for the presence of a signaling complex in vivo was obtained by purifying βAR from detergent extracts of mouse brain with alprenolol-Sepharose and showing that the precipitate also contained both D(2)-like dopamine receptors and AC.  相似文献   

14.
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.  相似文献   

15.
The results presented in this paper show that adenosine A2A receptor (A2AR) form homodimers and that homodimers but not monomers are the functional species at the cell surface. Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) techniques have been used to demonstrate in transfected HEK293 cells homodimerization of A2AR, which are heptaspanning membrane receptors with enriched expression in striatum. The existence of homodimers at the cell surface was demonstrated by time-resolved FRET. Although agonist activation of the receptor leads to the formation of receptor clusters, it did not affect the degree of A2AR-A2AR dimerization. Both monomers and dimers were detected by immunoblotting in cell extracts. However, cell surface biotinylation of proteins has made evident that more than 90% of the cell surface receptor is in its dimeric form. Thus, it seems that homodimers are the functional form of the receptor present on the plasma membrane. A deletion mutant version of the A2A receptor, lacking its C-terminal domain, was also able to form both monomeric and dimeric species when cell extracts from transfected cells were analyzed by immunoblotting. This suggests that the C-terminal tail does not participate in the dimerization. This is relevant as the C-terminal tail of A2AR is involved in heteromers formed by A2AR and dopamine D2 receptors. BRET ratios corresponding to A2AR-A2AR homodimers were higher than those encountered for heterodimers formed by A2AR and dopamine D2 receptors. As A2AR and dopamine D2 receptors do indeed interact, these results indicate that A2AR homodimers are the functional species at the cell surface and that they coexist with A2AR/D2 receptor heterodimers.  相似文献   

16.
A high renal oxygen (O2) need is primarily associated with the renal tubular O2 consumption (VO2) necessary for a high rate of sodium (Na+) transport. Limited O2 availability leads to increased levels of adenosine, which regulates the kidney via activation of both A1 and A2A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na+ transport and VO2 have not been determined. We demonstrated that A1R activation has a dose-dependent biphasic effect on both renal Na+/H+ exchanger-3 (NHE3), a major player in Na+ transport, and VO2. Here, we report concentration-dependent effects of adenosine: less than 5 × 10−7 M adenosine-stimulated NHE3 activity; between 5 × 10−7 M and 10−5 M adenosine-inhibited NHE3 activity; and greater than 10−5 M adenosine reversed the change in NHE3 activity (returned to baseline). A1R activation mediated the activation and inhibition of NHE3 activity, whereas 10−4 M adenosine had no effect on the NHE3 activity due to A2AR activation. The following occurred when A1R and A2AR were activated: (a) Blockade of the A2AR receptor restored the NHE3 inhibition mediated by A1R activation, (b) the NHE-dependent effect on VO2 mediated by A1R activation became NHE independent, and (c) A2AR bound to A1R. In summary, A1R affects VO2 via NHE-dependent mechanisms, whereas A2AR acts via NHE-independent mechanisms. When both A1R and A2AR are activated, the A2AR effect on NHE3 and VO2 predominates, possibly via an A1R–A2AR protein interaction. A2AR–A1R heterodimerization is proposed as the molecular mechanism enabling the NHE-independent control of renal VO2.  相似文献   

17.
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.  相似文献   

18.
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors.  相似文献   

19.
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.  相似文献   

20.
On the basis of earlier suggested unitary mechanism of synaptic plasticity opposite effects of adenosine and dopamine on the cAMP concentration in striatal spinal cells can emphasize the well known antagonistic interactions between A2A and D2 receptors on striatopallidal cells and between A1 and D1 receptors on striatonigral cells. This is due to that both the dopamine agonist and adenosine antagonist must promote the induction of long-term potentiation/depression of efficacy of excitatory cortical inputs to striatopallidal/striatonigral cells. This modification must lead to synergistic disinhibition of thalamic cells via "direct" and "indirect" pathways through basal ganglia and subsequent strengthening of motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号