首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic currents through the frog Ranvier node membrane were measured by the voltage clamp method on the membrane of a single myelinated frog's nerve fiber under conditions when Na+ in the external solution was replaced by nonpenetrating cations. When pH fell below 4.0, small (under 0.1 nA) inward currents were found and on the basis of various features (kinetics, region of activation, and blocking by the local anesthetic benzocaine — 1.0 mM) were identified as currents through sodium channels. The results of control experiments with variation of the concentrations of cations in the external solution led to the conclusion that the H+ (or H3O+) ion is the main carrier of the measured inward current. According to the results of measurement of the reversal potential of these currents, the relative permeability of sodium channels for hydrogen ions (PH/PNa) averages 205 ± 14. The results are discussed in terms of a model of the water pore with saturation. It is concluded that the energy barriers for H+ in the sodium channel are low. It was also shown that the velocity of passage of protons through the channel is limited by binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 499–507, September–October, 1982.  相似文献   

2.
Ionic currents through aconitine-modified sodium channels of the Ranvier node membrane were measured by a voltage clamp method in an external medium free from sodium ions. A shift of pH of the solution below 4.6 led to the appearance of inward ionic currents, whose kinetics and activation region were characteristic of aconitine-modified sodium channels at low pH. These currents were blocked by the local anesthetic benzocaine in a concentration of 2 mM. Experiments with variation of the concentration of Ca++, Tris+, TEA+, and choline+ in acid sodium-free solutions showed that these cations make no appreciable contribution to the inward current. It is concluded that the inward currents observed under these conditions are carried by H+ (or H3O+) through aconitine-modified sodium channels. From the shifts of reversal potentials of the ionic currents the relative permeability (PH/PNa) for H+ was determined: 1059 ± 88. The results agree with the view that the aconitine-modified sodium channel is a relatively wide water pore, and that movement of H+ through it is limited by its binding with an acid group.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 508–516, September–October, 1982.  相似文献   

3.
With the use of the patch-clamp technique, highly selective nonvoltage-gated sodium channels were found in the membrane of rat peritoneal macrophages. The inward single channel currents were measured in cell-attached and outside-out mode experiments at different holding membrane potentials within the range of-60 to +40 mV. The channels had a unitary conductance of 10.2 ± 0.2 pS with 145 mm Na+ in the external solution at 23–24°C. The results of ion-substitution experiments confirmed that this novel type of cation channel in macrophages is characterized by high selectivity for Na+ over K+ (as for Cs+, NH4 +, Ca2+, Ba2+) ions, whose conduction through these sodium-permeable channels was not measurable. Lithium is the only other ion that is transported by this pathway; the unitary conductance was equal to 3.9 ± 0.2 pS in the Li+-containing external solution. Single channel currents and conductance were found to be linearly dependent on the external sodium concentration. Sodium channels in macrophage membrane patches were not blocked by tetrodotoxin (0.01–1 m). Single sodium currents were reversibly inhibited by the external application of amiloride (0.1–2 mm) and its derivative ethylisopropilamiloride (0.01–0.1 Mm). The mechanism of channel block by amiloride and its analogue seems to be different.We thank Dr. G.N. Mozhayeva and Dr. A.P. Naumov for useful discussions. This work has been supported by a grant from the Russian Basic Research Foundation, 93-04-21722.  相似文献   

4.
Currents through "fast" (tetrodotoxin-sensitive) channels before and after external application of solutions containing 100 mM 1-ethyl-3-dimethylaminopropyl)carbodiimide-HCl (WSC) were measured during volage clamping at the membrane of dialyzed neurons of rat spinal ganglia. Treating the membrane with WSC (pH 4.8–4.9) led to a 5 to 20-fold reduction in sodium conductance, a 1.5–2.5-fold deceleration in the dynamics of current increase, and less abrupt voltage-dependent sodium channel activation curves. The shifted effective charge of activation was normally halved. The WSC produced no effect on activation parameters at normal pH (7.6). It was deduced that the changes observed resulted from WSC reacting with carboxyl groups located on the outer surface of the membrane. These groups are thought to be involved in the system of charge movements of the sodium channel gating mechanism.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 46–53, January–February, 1987.  相似文献   

5.
Techniques of intracellular dialysis and neuronal perfusion in the visceral ganglion ofLymnaea stagnalis used during voltage-clamping at the neuronal membrane helped to ascertain that a concentration of 1×10–16–1×10–6 M neuroactive peptides (vasopressin, oxytocin, and vasotocin) alter the amplitude of electrically-operated transmembrane ionic currents considerably without affecting the kinetics of current activation and inactivation and surface potential at the membrane. The experimental conditions applying made it possible to record incoming sodium and calcium currents separated from each other as well as outward delayed and transient potassium currents. It was found that electrically-operated cerebral currents could either increase or decline in amplitude under the effects of peptides applied at different concentrations to the membrane of the same unit. Receptors of the peptides investigated in this study are thought to be located within the structure of electrically-operated channels at the neuronal membrane.A. I. Gertsen Teaching Institute, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 526–533, July–August, 1990.  相似文献   

6.
Voltage clamping and intracellular perfusion methods were used to investigate ionic currents produced by depolarizing shifts of –120 mV from holding potential during experiments on neurons isolated from the trigeminial ganglion of one-month-old rats. It was found that tetradotoxin at low (external) concentrations of 10–12–1010 M produced an increase in the amplitude and alternations in the kinetics of inward ionic currents. Similar effects were observed in 8 test cells out of 29. The extent to which the increase in the amplitude of inward ionic currents depended on concentration level could be described by Langmuir's isotherm, with a dissociation constant of the order of 5·10–12 M. No such tetrodotoxin effects were observed when chloride ions were replaced by a non-penetrating anion in the intracellular solution. It is suggested that tetrodotoxin-sensitive channels exist in the neuronal membrane of the rat trigeminal ganglion, letting through chloride ions during depolarization of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 723–729, November–December, 1986.  相似文献   

7.
Experiments by the voltage clamp method showed that external application of quinidine (5 × 10–5 M) to the Ranvier node membrane of the frog nerve fiber inhibitis both sodium and potassium currents. Blocking of the sodium current is considerably intensified by repetitive depolarization of the membrane (1–10 Hz); the rate of development of the block increases with an increase in stimulation frequency. After the end of stimulation the sodium current gradually returns to its initial level (with a time constant of the order of 30 sec at 12°C). Unlike repetitive depolarization with short (5 msec) stimuli, a prolonged shift (1 sec) of potential toward depolarization has no significant effect on quinidine blocking of the sodium current. Analysis of the current-voltage characteristic curves showed that quinidine blocks outward sodium current more strongly than inward. Batrachotoxin protects sodium channels against the blocking action of quinidine in a concentration of 10–5 M. Inhibition of the outward potassium currents by quinidine is distinctly time-dependent in character: Initially the potassium current rises to a maximum, then falls steadily to a new stationary level. The results agree with the view that quinidine, applied externally, penetrates through the membrane in the basic form and blocks open sodium and potassium channels from within in the charged (protonated) form. The similarity in principle between the action of quinidine and local anesthetics on the sodium suggests that these compounds bind with the same receptor, located in the inner mouth of the sodium channel.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 324–330, May–June, 1982.  相似文献   

8.
Using an intracellular dialysis technique a study was made on calcium and sodium inward currents at the neuroblastoma somatic cell membrane in suspension and during the course of artificial morphological differentiation produced by raising the pH of the culture medium to 8.0–8.2. The density of sodium currents in the somata of cells cultured in the suspension averaged 7.3±0.8 µA/µF, while this value varied from 37±5.2 to 54.7±3.6 µA/µF at various stages of culture. These values equalled 1.4±0.2 and 1.1±0.2 to 2.8±0.4 µA/µF in the case of calcium currents. Reciprocal changes were produced in the density of sodium and calcium channels by altering the culture medium.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 207–214, March–April, 1986.  相似文献   

9.
Correlations between densities of various types of inward currents in the somatic membrane of dorsal root ganglion neurons were studied in three different rat age groups: 5–9 days, 45 days, and 90 days. A linear relationship was found in neurons with "slow" tetrodotoxin-sensitive sodium current between the densities of high-threshold calcium current and "slow" sodium current (Bravias-Pearson's correlation coefficient: r=0.84 and 0.70 for n1=16 and n2=28, respectively). No such correlation was observed in neurons with low-threshold calcium inward current. Cells with only two types of channel — "fast" sodium and high-threshold calcium — present in their somatic membrane manifested an inverse correlation (r=–0.48, where n4=95) between the densities of transmembrane currents passing through these channels. No inverse relationship was observed in the density of "fast" sodium and high-threshold calcium currents in neurons with tetradotoxinresistant "slow" sodium and/or low threshold calcium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 820–827, November–December, 1986.  相似文献   

10.
Currents passing through individual potassium channels with anomalous (inward) rectification were recorded at the neuronal membrane ofPlanorbarius corneus using the patch clamp technique. These currents could be detected, whether in "right side out" or "inside out" configurations in the presence of 50 mM potassium ions or one of the potassium channel blockers: tetraethylammonium (TEA), barium, or cesium (2–20 mM) on the external side of the membrane. Inward currents were observed in individual channels at potentials more negative than level of potassium equilibrium potential (Ek); conductance of these measured 81±12 pS (n=11). At more positive potentials than Ek, conductance fell to zero. Potassium channels with anomalous (inward) rectification inPlanorbarius corneus resemble equivalent channels in other cells in their kinetics: time scale of the open state may be described by a single exponential function. This would imply that the ionic channel has a single open state. Time scale of the closed state was biexponential, thus indicating the possible existence of two kinetically different nonconducting states of the potassium channel with anomalous (inward) rectification at the neuronal membrane ofPlanorbarius corneus.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 31–38, January–February, 1989.  相似文献   

11.
Currents through single cardiac sodium channels have been measured in inside-out patches from guinea pig ventricular cells. To abolish the fast inactivation, Na channels were modified by DPI 201–106. In symmetrical Na solutions, a diminution of outward sodium currents can be observed that depends on the intracellular magnesium concentration and the membrane potential. Inward currents were not altered by the concentrations of magnesium used (between 0 and 22.5 mmol/1). In Mg free solutions a linear current-voltage relation can also be measured in the range of outward Na currents. At +60 mV (symmetrical Na solutions, single channel conductance 24 pS) a half maximal block of cardiac Na channels by intracellular magnesium was found at 2.1 mmol/l. From the analysis of single channel current-voltage relationships the concentration and voltage-dependent block by intracellular magnesium of cardiac sodium channels could be described as binding of Mg at one site with a K d value of 5.1 mmol/1 at 0 mV. The site is located at an electrical distance of 0.18 from the inside. Offprint requests to: B. Nilius  相似文献   

12.
The inhibition of sodium currents by quaternary derivatives of lidocaine was studied in single myelinated nerve fibers. Membrane currents were diminished little by external quaternary lidocaine (QX). QX present in the axoplasm (<0.5 mM) inhibited sodium currents by more than 90%. Inhibition occurred as the sum of a constant, tonic phase and a variable, voltage-sensitive phase. The voltage-sensitive inhibition was favored by the application of membrane potential patterns which produce large depolarizations when sodium channels are open. Voltage-sensitive inhibition could be reversed by small depolarizations which opened sodium channels. One explanation of this observation is that QX molecules enter open sodium channels from the axoplasmic side and bind within the channels. The voltage dependence of the inhibition by QX suggests that the drug binds at a site which is about halfway down the electrical gradient from inside to outside of the sodium channel.  相似文献   

13.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44–1.1 mM) or putrescine (∼0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between −80 (the reversal potential) and ∼−40 mV during voltage steps applied from −110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between −40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to −50 mV after short depolarizing steps (>0 mV), a transient increase appeared in outward currents at −50 mV. Since the peak amplitude depended on the fraction of Mg2+-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (−110 to −80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg2+-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 μM, an estimated free spermine level during whole-cell recordings) and putrescine (300 μM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

14.
Potassium currents through the somatic membrane of giant neurons ofHelix pomatia in normal (10 mM Ca) Ringer's solution and low-calcium (1 mM Ca) solution were studied by the voltage clamp method. With a decrease in the Ca concentration to 1 mM peak potassium conductance versus membrane, potential curves and inactivation curves were shifted along the voltage axis in the negative direction by about 10 mV. Inactivation of the delayed potassium current was slowed in low Ca solution. The effect of a decrease in external calcium concentration on volt-ampere and inactivation characteristics increased with a rise in external pH. These effects of a low Ca concentration on potassium mechanisms of the giant neuron somatic membrane can be attributed to changes in the negative surface potential in the region of the potassium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Biology, Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 400–409, July–August, 1976.  相似文献   

15.
The distribution of different types of ionic channels carrying inward currents was investigated in the somatic membranes of spinal ganglion neurons in rats belonging to three different age groups: at 5–9 days, 45 days, and 3 months. A decrease was found in the number of neuronal membranes operating all four types of inward current channels simultaneously: "fast" (tetrodotoxin-sensitive), "slow" (tetrodotoxin-resistant) sodium currents and low- and high-threshold calcium currents. There were 14.5% of such neurons in the first age group, 5% in the second, and 1% on the third. It was found that this change was related to the disappearance of "slow" (tetrodotoxin-resistant) sodium and high-threshold calcium channels from the membrane. The number of neuronal somatic membranes with only two types of inward current channels ("fast" sodium and high-threshold calcium channels) increased proportionately.A. A. Bogomolets Institute of Technology, Academy of Sciences of the Ukrainian SSR, Kiev Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 813–820, November–December, 1986.  相似文献   

16.
The characteristics of slow inward sodium currents arising in response to membrane depolarization were studied in experiments on isolated dialyzed neurons of the snailHelix pomatia when the calcium-chelating agent EDTA was added to the calcium-free external solution. Values of the relative permeability of the corresponding ionic channels, determined from the shift of the equilibrium potential, were: PNa+:PLi+: +=1.00:0.80:0.55:0.21. The ratio between these values for "fast" sodium channels was 1.00:1.04:0.44:0.19. The induced sodium current was blocked by D-600 and nifedipine, which block calcium channels, more effectively than the calcium current of the same membrane (the corresponding dissociation constants were 10–5 and 0.8·10–5 mole/liter for the induced sodium current compared with 2.6·10–5 and 2.3·10–5 mole/liter for the calcium current). It is postulated on the basis of these data that the calcium channels have a principal selective filter similar to that of sodium channels, but also an additional binding site for bivalent cations, which prevents entry of monovalent cations into the channel. The addition of calcium-chelating agents to the calcium-free external solution liberates this site and thereby modifies the calcium channel into a sodium channel.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 491–498, September–October, 1982.  相似文献   

17.
Ionic currents through fast sodium channels in the neuronal somatic membrane were measured under voltage clamp conditions using external solutions of normal and low pH. Voltage-dependent inhibition of ionic currents through open channels was observed in acidic solutions. The voltage-dependent block of sodium channels may be explained by the presence of two acid groups at the channel. The parameters of the inner and outer acid groups calculated according to this model are similar to those reported for the nodal membrane.  相似文献   

18.
Summary The effects of pH on the permeability and conductance of the membranes to nitrate and to chloride of semitendinosus and lumbricalis muscle fibers were examined.Membrane potential responses to quick solution changes were recorded in semitendinosus fibers initially equilibrated in isotonic, high K2SO4 solutions. External solutions were first changed to ones in which either Rb+ or Cs+ replaced K+ and then to solutions containing either NO 3 or Cl to replace SO 4 2– . The hyperpolarizations produced by Cl depend on external pH, being smaller in acid than in alkaline solutions. By contrast, hyperpolarizations produced by NO 3 were independent of external pH over a pH range from 5.5 to 9.0.In addition, voltage-clamp measurements were made on short lumbricalis muscle fibers. Initially they were equilibrated in isotonic solutions containing mainly K2SO4 plus Na2SO4. KCl or KNO3 were added to the sulfate solutions and the fibers were equilibrated in these new solutions. When finally equilibrated the fibers had the same volume they had in the sulfate solutions before the additions. Constant hyperpolarizing voltage pulses of 0.6-sec duration were applied when all external K+ was replaced by TEA+. For these conditions, inward currents flowing during the voltage pulses were largely carried by Cl or NO 3 depending on the final equilibrating solution. Cl currents during voltage pulses were both external pH and time dependent. By contrast, NO 3 currents were independent of both external pH and time.The voltage dependence of NO 3 currents could be fit by constant field equations with aP NO 3 of 3.7·10–6 cm/sec. The voltage dependence of the initial or instantaneous Cl currents at pH 7.5 and 9.0 could also be fit by constant field equations with PCl of 5.8·10–6 and 7.9·10–6 cm/sec, respectively. At pH 5.0, no measurable instantaneous Cl currents were found.From these results we conclude that NO 3 does not pass through the pH, time-dependent Cl channels but rather passes through a distinct set of channels. Furthermore, Cl ions do not appear to pass through the channels which allow NO 3 through. Consequently, the measured ratio ofP Cl/P NO 3 based on membrane potential changes to ionic changes made on intact skeletal muscle fibers is not a measure of the selectivity of a single anion channel but rather is a measure of the relative amounts of different channel types.  相似文献   

19.
Electrically operated sodium channels in the somatic membrane of isolated neurons from the rat superior cervical ganglion were investigated using an intracellular dialysis technique and voltage clamping. It was found that sodium currents can be conveyed along two independent systems of sodium channels in these neurons. A mathematical analysis was made of voltage-dependent tetrodotoxin-sensitive fast sodium currents within the framework of the Hodgkin-Huxley model and their kinetic properties were compared with those described in other subjects. It was also shown that the tetrodotoxin-sensitive sodium channels in the somatic membrane of sympathetic neurons have a high affinity for sodium ions. The kinetic and voltage-dependent characteristics of slow tetrodotoxin-sensitive inward sodium current are described. It is also noted that this component of the sodium current was observed in only a limited number of neurons (not more than 2%).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 108–117, January–February, 1986.  相似文献   

20.
Summary The membrane of mechanically prepared vesicles ofChara corallina has been investigated by patch-clamp techniques. This membrane consists of tonoplast as demonstrated by the measurement of ATP-driven currents directed into the vesicles as well as by the ATP-dependent accumulation of neutral red. Addition of 1mm ATP to the bath medium induced a membrane current of about 3.2 mA·m–2 creating a voltage across the tonoplast of about –7 mV (cytoplasmic side negative). On excised tonoplast patches, currents through single K+-selective channels have been investigated under various ionic conditions. The open-channel currents saturate at large voltage displacements from the equilibrium voltage for K+ with limiting currents of about +15 and –30 pA, respectively, as measured in symmetric 250mm KCl solutions. The channel is virtually impermeable to Na+ and Cl. However, addition of Na+ decreases the K+ currents. TheI–V relationships of the open channel as measured at various K+ concentrations with or without Na+ added are described by a 6-state model, the 12 parameters of which are determined to fit the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号