首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein, type ii (CRBP(II] are cytoplasmic proteins that bind trans-retinol as an endogenous ligand. These proteins are structurally similar having greater than 50% sequence homology. Employing fluorescence, absorbance, and competition studies, the ability of pure preparations of CRBP(II) and CRBP to bind various members of the vitamin A family has been examined. In addition to trans-retinol, CRBP(II) was able to form high affinity complexes (K'd less than 5 X 10(-8) M) with 13-cis-retinol, 3-dehydroretinol, and all-trans-retinaldehyde. CRBP bound those retinol isomers with similar affinities, but did not bind trans-retinaldehyde. Neither protein bound retinoic acid nor 9-cis- and 11-cis-retinol. The spectra of 13-cis-retinol and 3-dehydroretinol, when bound, were shifted and displayed fine structure compared to their spectra in organic solution. However, the lambda max and fluorescent yield of a particular ligand were different when bound to CRBP(II) versus CRBP. It appears that CRBP(II) and CRBP bind trans-retinol, 13-cis-retinol, and 3-dehydroretinol in a planar configuration. However, the binding sites of CRBP(II) and CRBP are clearly distinct based on the observed spectral differences of the bound ligands and the observations that only CRBP(II) could bind trans-retinaldehyde. The ability of CRBP(II) to bind trans-retinaldehyde suggests a physiological role for the protein in accepting retinaldehyde generated from the cleavage of beta-carotene in the absorptive cell.  相似文献   

2.
Mouse embryos were exposed to all-trans-retinoic acid on day 11 or day 12 of development and the resulting skeletal pattern alterations compared with early effects on Hoxd-11 and Hoxd-13 expression domains and RAR-β2/β4 promoter activity. The effects on skeletal pattern showed a clear correlation between the timing of retinoic acid exposure and the sequence of mesenchymal condensation. Ectopic RAR-β2/β4 promoter activity was detected within 2 hr of exposure to retinoic acid, and was present throughout the limb bud after 5 hr; it remained high in the apical ectodermal ridge and proximal mesenchyme after 12 hr, by which time the abnormal digital pattern could be seen. HoxD gene expression domains in the distal handplate were narrowed by 5 hr after maternal retinoic acid administration on day 11. Following retinoic acid treatment on both day 11 and day 12, the normal downregulation of Hoxd-11 and Hoxd-13 in the digital mesenchymal condensations was retarded. There was no evidence to suggest that RAR-β2/β4 promoter activity mediates the effects of RA on HoxD gene expression, but ectopic promoter activity is a useful indicator of at least some of the sites in which RA levels are raised. We suggest (1) that the apical ectodermal ridge is the most functionally significant of these sites, (2) that raised retinoic acid levels in the ridge result in altered gene expression and/or altered cell proliferation within this epithelium, (3) that both altered HoxD gene expression domains and altered skeletal pattern formation are secondary to this effect. There was a good correlation between the effects of retinoic acid on Hoxd-11 and Hoxd-13 expression and delay of skeletal differentiation, suggesting that this may be a direct effect. © 1996 Wiley-Liss, Inc.  相似文献   

3.
To elucidate the possible role of 11-cis-retinol dehydrogenase in the visual cycle and/or 9-cis-retinoic acid biosynthesis, we generated mice carrying a targeted disruption of the 11-cis-retinol dehydrogenase gene. Homozygous 11-cis-retinol dehydrogenase mutants developed normally, including their retinas. There was no appreciable loss of photoreceptors. Recently, mutations in the 11-cis-retinol dehydrogenase gene in humans have been associated with fundus albipunctatus. In 11-cis-retinol dehydrogenase knockout mice, the appearance of the fundus was normal and punctata typical of this human hereditary ocular disease were not present. A second typical symptom associated with this disease is delayed dark adaptation. Homozygous 11-cis-retinol dehydrogenase mutants showed normal rod and cone responses. 11-cis-Retinol dehydrogenase knockout mice were capable of dark adaptation. At bleaching levels under which patients suffering from fundus albipunctatus could be detected unequivocally, 11-cis-retinol dehydrogenase knockout animals displayed normal dark adaptation kinetics. However, at high bleaching levels, delayed dark adaptation in 11-cis-retinol dehydrogenase knockout mice was noticed. Reduced 11-cis-retinol oxidation capacity resulted in 11-cis-retinol/13-cis-retinol and 11-cis-retinyl/13-cis-retinyl ester accumulation. Compared with wild-type mice, a large increase in the 11-cis-retinyl ester concentration was noticed in 11-cis-retinol dehydrogenase knockout mice. In the murine retinal pigment epithelium, there has to be an additional mechanism for the biosynthesis of 11-cis-retinal which partially compensates for the loss of the 11-cis-retinol dehydrogenase activity. 11-cis-Retinyl ester formation is an important part of this adaptation process. Functional consequences of the loss of 11-cis-retinol dehydrogenase activity illustrate important differences in the compensation mechanisms between mice and humans. We furthermore demonstrate that upon 11-cis-retinol accumulation, the 13-cis-retinol concentration also increases. This retinoid is inapplicable to the visual processes, and we therefore speculate that it could be an important catabolic metabolite and its biosynthesis could be part of a process involved in regulating 11-cis-retinol concentrations within the retinal pigment epithelium of 11-cis-retinol dehydrogenase knockout mice.  相似文献   

4.
9-cis-retinoids: biosynthesis of 9-cis-retinoic acid   总被引:5,自引:0,他引:5  
  相似文献   

5.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(19):5809-5818
The identification of the critical enzyme(s) that carries out the trans to cis isomerization producing 11-cis-retinol during the operation of the visual cycle remains elusive. Confusion exists in the literature as to the exact nature of the isomerization substrate. At issue is whether it is an all-trans-retinyl ester or all-trans-retinol (vitamin A). As both putative substrates interconvert rapidly in retinal pigment epithelial membranes, the choice of substrate can be ambiguous. The two enzymes that effect interconversion of all-trans-retinol and all-trans-retinyl esters are lecithin retinol acyl transferase (LRAT) and retinyl ester hydrolase (REH). The retinyl ester or all-trans-retinol pools are radioactively labeled separately in the presence of inhibitors of LRAT and REH, effectively preventing their interconversion. Pulse-chase experiments unambiguously demonstrate that all-trans-retinyl esters, and not all-trans-retinol, are the precursors of 11-cis-retinol. When the all-trans-retinyl ester pool is radioactively labeled, the resulting 11-cis-retinol is labeled with the same specific activity as the precursor ester. The converse is true with vitamin A. These data unambiguously establish all-trans-retinyl esters as the precursors of 11-cis-retinol.  相似文献   

6.
Recent studies of the human, mouse and bovine genes for 11-cis-retinol dehydrogenase (11cRDH) and human and mouse 9-cis-retinol dehydrogenase (9cRDH) suggest that they are homologs of the same enzyme. This conclusion is inconsistent with earlier literature indicating that 11cRDH is expressed solely in the eye and does not utilize 9-cis-retinol as a substrate. We have compared directly the kinetic properties of recombinant human and mouse 9cRDH with those of bovine 11cRDH for 9-cis- and 11-cis-retinol and investigated the inhibitory properties of 13-cis-retinoic acid on each of these enzymes. Human and mouse 9cRDH and bovine 11cRDH have very similar kinetic properties towards 9-cis- and 11-cis-retinol oxidation and they respond identically to 13-cis-retinoic acid inhibition. Our biochemical data are consistent with the conclusion that 9cRDH and 11cRDH are the same enzyme.  相似文献   

7.
Lecithin retinol acyl transferase (LRAT) from the retinyl pigment epithelium is potently inhibited by all-trans-retinyl alpha-bromoacetate in the micromolar range. The inhibition is competitive and reversible. The retinyl pigment epithelium also contains an enzymatic activity capable of converting added all-trans-retinol into 11-cis-retinol. This isomerization is likely to require the intermediate formation of all-trans-retinyl esters, which are themselves produced by LRAT action. Here this possibility is directly tested by studying the effect of all-trans-retinyl alpha-bromoacetate on the isomerization reaction. When pigment epithelium membranes are preincubated with all-trans-retinyl alpha-bromoacetate, they form neither retinyl esters nor 11-cis-retinol from added all-trans-retinol. However, if the pigment epithelium membranes are first allowed to form all-trans-retinyl esters from all-trans-retinol before the addition of all-trans-retinyl alpha-bromoacetate, then 11-cis-retinol formation proceeds at close to the rate found in the absence of inhibitor. In addition, 11-cis-retinyl esters are not formed under these conditions, eliminating the possibility of a direct ester-ester isomerization route. Therefore, all-trans-retinyl esters are obligate intermediates in the biosynthesis of 11-cis-retinol.  相似文献   

8.
As reported previously squamous cell differentiation of rabbit tracheal epithelial (RTE) cells in culture is a multi-step process. This program of differentiation is inhibited by retinoic acid and retinol; retinoic acid is about 100 times more effective than retinol. To examine the metabolism of these agents in this in vitro model system, RTE cells were grown in the presence of all-trans-[3H]retinol or all-trans-[3H]retinoic acid and their metabolites analyzed by high-pressure liquid chromatography. RTE cells converted most of the retinol to retinyl esters, predominantly retinyl palmitate. A small fraction was metabolized to polar compounds, one of which coeluted with retinoic acid. After methylation this compound eluted as 13-cis-methyl retinoate and as all-trans-methyl retinoate. Conversion to 13-cis-retinol was also observed. All-trans-retinoic acid was rapidly taken up by RTE cells and converted to more polar (peak 1) and less polar (peak 3) metabolites. A proportion of all-trans-[3H]retinoic acid was metabolized to 13-cis-[3H]retinoic acid. These metabolic reactions appeared to be constitutive and were not induced by pretreatment with retinoic acid. The peak 1 metabolites were rapidly secreted into the medium whereas the peak 3 metabolites were retained by the cells and were not detected in the medium. Alkaline hydrolysis of the metabolites in peak 3 yielded retinoic acid, indicating the formation of retinoyl derivatives. Our results establish that RTE cells can convert all-trans-retinol to 13-cis-retinol and retinoic acid. RTE can metabolize all-trans-retinoic acid to 13-cis-retinoic acid and to an unidentified ester of retinoic acid.  相似文献   

9.
Retinoic acid is generated by a two-step mechanism. First, retinol is converted into retinal by a retinol dehydrogenase, and, subsequently, retinoic acid is formed by a retinal dehydrogenase. In vitro, several enzymes are suggested to act in this metabolic pathway. However, little is known regarding their capacity to contribute to retinoic acid biosynthesis in vivo. We have developed a versatile cell reporter system to analyze the role of several of these enzymes in 9-cis-retinoic acid biosynthesis in vivo. Using a Gal4-retinoid X receptor fusion protein-based luciferase reporter assay, the formation of 9-cis-retinoic acid from 9-cis-retinol was measured in cells transfected with expression plasmids encoding different combinations of retinol and retinal dehydrogenases. The results suggested that efficient formation of 9-cis-retinoic acid required co-expression of retinol and retinal dehydrogenases. Interestingly, the cytosolic alcohol dehydrogenase 4 failed to efficiently catalyze 9-cis-retinol oxidation. A structure-activity analysis showed that mutants of two retinol dehydrogenases, devoid of the carboxyl-terminal cytoplasmic tails, displayed greatly reduced enzymatic activities in vivo, but were active in vitro. The cytoplasmic tails mediate efficient endoplasmic reticulum localization of the enzymes, suggesting that the unique milieu in the endoplasmic reticulum compartment is necessary for in vivo activity of microsomal retinol dehydrogenases.  相似文献   

10.
11-cis-Retinol dehydrogenase catalyzes the oxidation of cis-retinols, a rate-limiting step in the biosynthesis of 9-cis-retinoic acid. It is also active toward 3alpha-hydroxysteroids, and thus might be involved in steroid metabolism. To better understand the role of this enzyme, we produced stable transfectants expressing 11-cis-retinol dehydrogenase in human embryonic kidney 293 cells. In vitro enzymatic assays have demonstrated that, with an appropriate exogenous cofactor, the enzyme catalyzes the interconversion of 5alpha-androstane-3alpha,17beta-diol and dihydrotestosterone and that of androsterone and androstanedione. However, using intact transfected cells, we found that the enzyme catalyzes reactions only in the oxidative direction. Thus, it is possible that 5alpha-androstane-3alpha,17beta-diol (an inactive androgen) can be converted into dihydrotestosterone, the most potent androgen, by the action of 11-cis-retinol dehydrogenase. This reaction could constitute a non-classical pathway of production of active androgens in the peripheral tissues. We also showed that all-trans-, 9-cis- and 13-cis-retinol inhibit the oxidative 3alpha-hydroxysteroid steroid activity of 11-cis-retinol dehydrogenase with similar K(i) values. Since all-trans-retinol is a precursor of cis-retinols, its inhibitory effect on the activity suggests that it could play an important role in modulating the formation of 9-cis-retinoic acid. In addition, we examined the effect of several known enzyme modulators, namely carbenoxolone, phenylarsine oxide and phosphatidylcholine, on 11-cis-retinol dehydrogenase activity. Taken together, our results suggest that, in humans, this enzyme might play a role in the biosynthesis of both 9-cis-retinoic acid and dihydrotestosterone.  相似文献   

11.
We have previously shown that membranes from the retinal pigment epithelium can transform added all-trans-retinol into a mixture of 11-cis-retinoids, demonstrating the "missing reaction" in the visual cycle for the first time (Bernstein, P. S., Law, W. C., and Rando, R. R. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1849-1853). In this article, this isomerase activity is further characterized. Double-label experiments with [15-3H]- and [15-14C]all-trans-retinol as the substrate show that the tritium label is retained in the 11-cis-retinol and 11-cis-retinyl palmitate products. This requires that isomerization occur at the alcohol level of oxidation. All-trans-retinyl esters, such as the palmitate, acetate, butyrate, and hexanoate esters, are not directly transformed into their 11-cis counterparts by the membranes. The data are consistent with the presence of an all-trans-retinol isomerase enzyme system or enzyme complex, which produces 11-cis-retinol. Other isomeric retinols were tested for substrate activity. Neither 9-cis-retinol(al) nor 13-cis-retinol were processed by the isomerase. Since the membranes containing the isomerase possess other retinol metabolizing activities, such as retinyl ester synthetase and dehydrogenase activities, further purification was attempted. Appreciable quantities of all detergents tested led to the disappearance of isomerase activity, and high salt or EDTA did not dissociate isomerase activity from the membranes. However, extensive sonication of the membranes did produce a 100,000 x g supernatant fraction of light membranes depleted of other all-trans-retinol processing activities. The isomerase activity in these membranes was saturable with all-trans-retinol, as required for a biologically significant process, and showed a Vmax of 5 pmol/h/mg of protein, a KM of 0.8 microM, and a pH optimum of 8. The isomerase was destroyed by proteinase K, by phospholipase C, by heating, or by ethanol at concentrations greater than 1%. The addition of high energy compounds, such as MgATP, MgGTP, or palmitoyl-CoA, did not appear to stimulate isomerase activity in the 100,000 x g supernatant.  相似文献   

12.
13.
In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of apo-cellular retinaldehyde-binding protein. This retinoid-binding protein may drive the reaction by mass action, overcoming the thermodynamically unfavorable isomerization. Furthermore, this 11-cis-retinol/11-cis-retinal-specific binding protein potently stimulates hydrolysis of endogenous 11-cis-retinyl esters but has no effect on hydrolysis of all-trans-retinyl esters. Apo-cellular retinaldehyde-binding protein probably exerts its effect by trapping the 11-cis-retinol product. When retinoid-depleted retinal pigment epithelial microsomes were preincubated with different amounts of all-trans-retinol to form all-trans-retinyl esters and then [3H]all-trans-retinol was added, as predicted, the specific radioactivity of [3H]all-trans-retinyl esters increased during subsequent reaction. However, the specific radioactivity of newly formed 11-cis-retinol stayed constant during the course of the reaction, and it was largely unaffected by expansion of the all-trans-retinyl ester pool during the preincubation. The absence of dilution establishes that most of the ester pool does not participate in isomerization, which in turn suggests that a retinoid intermediate other than all-trans-retinyl ester is on the isomerization reaction pathway.  相似文献   

14.
Mice deficient in growth differentiation factor 11 (GDF11) signaling display anterior transformation of axial vertebrae and truncation of caudal vertebrae. However, the in vivo molecular mechanisms by which GDF11 signaling regulates the development of the vertebral column have yet to be determined. We found that Gdf11 and Acvr2b mutants are sensitive to exogenous RA treatment on vertebral specification and caudal vertebral development. We show that diminished expression of Cyp26a1, a retinoic acid inactivating enzyme, and concomitant elevation of retinoic acid activity in the caudal region of Gdf11−/− embryos may account for this phenomenon. Reduced expression or function of Cyp26a1 enhanced anterior transformation of axial vertebrae in wild-type and Acvr2b mutants. Furthermore, a pan retinoic acid receptor antagonist (AGN193109) could lessen the anterior transformation phenotype and rescue the tail truncation phenotype of Gdf11−/− mice. Taken together, these results suggest that GDF11 signaling regulates development of caudal vertebrae and is involved in specification of axial vertebrae in part by maintaining Cyp26a1 expression, which represses retinoic acid activity in the caudal region of embryos during the somitogenesis stage.  相似文献   

15.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.  相似文献   

16.
Gollapalli DR  Rando RR 《Biochemistry》2003,42(50):14921-14929
The biochemical pathway to visual chromophore biosynthesis in rod-dominated animals involves minimally a two component system in which all-trans-retinyl esters, generated by the action of lecithin retinol acyltransferase (LRAT) on vitamin A, are processed into 11-cis-retinol by isomerohydrolase. Possible differences in retinoid metabolism in cone-dominated animals have been noted in the literature, so it was of interest to explore whether these differences are tangential or fundamental. Central to this issue is whether cone-dominated animals use an isomerohydrolase (IMH)-based mechanism in the predominant pathway to 11-cis-retinoids. Here, it is shown that all-trans-retinyl esters (tREs) are the direct precursors of 11-cis-retinol formation in chicken retinyl pigment epithelium/retina preparations. This conclusion is based on at least three avenues of evidence. First, reagents that block tRE synthesis from vitamin A also block 11-cis-retinol synthesis. Second, pulse-chase experiments also establish that tREs are the precursors to 11-cis-retinol. Finally, 11-cis-retinyl-bromoacetate, a known affinity-labeling agent of isomerohydrolase, also blocks chromophore biosynthesis in the cone system.  相似文献   

17.
18.
ABSTRACT

Intensive selection in modern lines of fast-growing chickens has caused several skeletal disorders. Therefore, current research is focused on methods to improve the bones of birds. A new potential solution is in ovo technology using nanoparticles with a high specificity for the bone tissue. Thus, the objective of the present study was to evaluate the effect of in ovo application of hydroxyapatite nanoparticles (HA-NP) in different concentrations (50, 100 and 500 μg/ml colloids) on chicken embryo development, with a particular focus on the oxidative status and bone characteristics of the embryo. The results showed that in ovo treatment with HA-NP did not negatively affect hatchability and body weight. However, bone weight was reduced in 500 μg/ml group. The concentrations of calcium, phosphorus and crude ash were not affected. The modulatory effect of HA-NP was observed on the basis of antioxidative markers – superoxide dismutase, total antioxidant status, malondialdehyde in serum and selected tissues. Glutathione concentration in serum suggested higher metabolic stress. Among bone turnover markers, the concentration of osteocalcin was found to be significantly affected by HA-NP injection. Thus, the in ovo application of HA-NP could modify the molecular responses at the stage of embryogenesis but these changes were not reflected in embryo growth and even slowed down bone development. Nevertheless, the question for the follow-up research is whether in ovo administration of HA-NP would affect the antioxidative status and bone turnover resulting in improved bone conditions and body gain in post hatch chickens.  相似文献   

19.
Zhuang R  Lin M  Napoli JL 《Biochemistry》2002,41(10):3477-3483
9-cis-Retinoic acid activates retinoid X receptors, which serve as heterodimeric partners with other nuclear hormone receptors, yet the enzymology of its physiological generation remains unclear. Here, we report the identification and molecular/enzymatic characterization of a previously unknown member of the short-chain dehydrogenase/reductase family, CRAD3 (cis-retinoid/androgen dehydrogenase, type 3), which catalyzes the first step in 9-cis-retinoic acid biosynthesis, the conversion of 9-cis-retinol into 9-cis-retinal. CRAD3 shares amino acid similarity with other retinoid/steroid short-chain dehydrogenases/reductases: CRAD1, CRAD2, and RDH4. Relative to CRAD1, CRAD3 has greater 9-cis-retinol/all-trans-retinol discrimination and lower efficiency as an androgen dehydrogenase. CRAD3 has apparent efficiency (V/K(m)) for 9-cis-retinol about equivalent to that for CRAD1 and 3 orders of magnitude greater than that for RDH4. (CRAD2 does not recognize 9-cis-retinol as a substrate). CRAD3 contributes to 9-cis-retinoic acid production in intact cells, in conjunction with each of three retinal dehydrogenases that recognize 9-cis-retinal (RALDH1/AHD2, RALDH2, and ALDH12). Liver and kidney, two tissues reportedly with the highest concentrations of 9-cis-retinoids, show the most intense mRNA expression of CRAD3, but expression also occurs in testis, lung, small intestine, heart, and brain. These data are consistent with the participation of CRAD3 in the biogeneration of 9-cis-retinoic acid.  相似文献   

20.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号