首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bauhinia ungulata factor Xa inhibitor (BuXI) inactivates factor Xa and LOPAP, a prothrombin activator proteinase isolated from the venom of Lonomia obliqua caterpillar bristles. The reactive site of the enzyme-inhibitor interaction was explored to design specific substrates for both enzymes. Methionine is crucial for LOPAP and factor Xa substrate interaction, since the change of both Met residues in the substrates abolished the hydrolysis. Synthetic substrates containing the sequence around the reactive site of BbKI, a plasma kallikrein inhibitor, were shown to be specific for trypsin hydrolysis. Therefore, these substrates may be an alternative in studies aiming at a characterization of trypsin-like enzyme activities, especially non-mammalian enzymes.  相似文献   

2.
Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.  相似文献   

3.
A severe hemorrhagic syndrome produced by contact with Lonomia obliqua caterpillars has become epidemic in southern Brazil. A significant thrombin production with intense consumption of fibrinogen and high D-dimer production indicates a consumption coagulopathy and secondary fibrinolysis in patients. Lopap is a single-chain 69kDa serine protease isolated from the crude extract of L. obliqua bristles. Experiments in mice showed that the purified protein, similar to the crude extract, causes uncoagulable blood by fibrinogen depletion. In order to characterize the effects of Lopap on cells involved with hemostatic system, we performed experiments using human umbilical vein endothelial cells (HUVECs). Our results show that Lopap exerts a direct effect on endothelial cells by increasing the liberation of molecules involved in the regulation of vascular tone, inhibiting platelet activation and chemotaxis, apart from inducing the expression of cell adhesion molecules which participate in inflammatory responses. The release or new synthesis of mediators involved in coagulation as von Willebrand factor and tissue factor, or in fibrinolysis as tissue plasminogen activator, was not affected by Lopap. Also our results demonstrated that Lopap acts on cell survival of HUVECs, regulating the expression of molecules as NO and avoiding cell death.  相似文献   

4.
5.
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.  相似文献   

6.
It has been shown that physical exercise increases blood fibrinolytic potential, primarily by inducing a release of extrinsic plasminogen activator from the vessel wall. Synthetic estrogens have also been reported to influence fibrinolytic activity. The effect of exercise and the possible additional effect of oral contraceptive agents (OCA) on the fibronolytic system were studied in 20 competitive female rowers. Ten females used OCA (users), and 10 others did not (nonusers). All participants were subjected to standardized exhaustive exercise. Preexercise data revealed higher factor XII, total plasminogen, and free plasminogen levels together with a significantly lower C1-inactivator level in the group of users. No differences were observed in prekallikrein, high-molecular-weight kininogen, alpha 2-antiplasmin, alpha 2-macroglobulin, antithrombin III, and histidine-rich glycoprotein plasma levels. The factor XII-dependent fibrinolytic activator activity and the extrinsic (tissue-type) plasminogen activator were significantly higher; however, the urokinase-like fibrinolytic activator activity was significantly lower. These observations suggest a greater susceptibility to activation of the fibrinolytic pathways during OCA medication. Exercise resulted in a decrease of all factors under study but an increase in all fibrinolytic activities. No differences were observed between the two groups in the percentages of change that occurred with exercise.  相似文献   

7.
Vibrio vulnificus is a causative agent of serious food-borne diseases in humans related to the consumption of raw seafood. It secretes a metalloprotease that is associated with skin lesions and serious hemorrhagic complications. In this study, we purified and characterized an extracellular metalloprotease (designated as vEP) having prothrombin activation and fibrinolytic activities from V. vulnificus ATCC 29307. vEP could cleave various blood clotting-associated proteins such as prothrombin, plasminogen, fibrinogen, and factor Xa, and the cleavage could be stimulated by addition of 1 mM Mn2+ in the reaction. The cleavage of prothrombin produced active thrombin capable of converting fibrinogen to fibrin. The formation of active thrombin appeared to be transient, with further cleavage resulting in a loss of activity. The cleavage of plasminogen, however, did not produce an active plasmin. vEP could cleave all three major chains of fibrinogen without forming a clot. It could cleave fibrin polymer formed by thrombin as well as the cross-linked fibrin formed by factor XIIIa. In addition, vEP could also cleave plasma proteins such as bovine serum albumin and gamma globulin, and its broad specificity is reflected in the cleavage sites, which include Asp207-Phe208 and Thr272-Ala273 bonds in prothrombin and a Tyr80-Leu81 bond in plasminogen. Taken together, the data suggest that vEP is a broad-specificity protease that could function as a prothrombin activator and a fibrinolytic enzyme to interfere with blood homeostasis as part of the mechanism associated with the pathogenicity of V. vulnificus in humans and thereby facilitate the development of systemic infection.  相似文献   

8.
Contact with the bristles of the caterpillar Lonomia obliqua can cause serious hemorrhage. Previously it was reported that a procoagulant protein (Lopap) in the bristle extract of L. obliqua increases cell longevity by inhibiting apoptosis. In this work, we purified from bristle extract a factor X activator that stimulates proliferation of endothelial cells. This protein, named Losac, was purified by ion exchange chromatography, followed by gel filtration chromatography and reverse-phase HPLC. Losac is a 45-kDa protein that activates factor X in a concentration-dependent manner and does not depend on calcium ions. In cultures of HUVECs, Losac increased cell proliferation and inhibited the apoptosis induced by starvation. HUVECs incubated with Losac (0.58microM for 1h) increased release of nitric oxide and tissue-plasminogen activator, which both may mediate anti-apoptosis. Losac also increased slightly the decay-accelerating factor (DAF=CD55), which protects cells from complement-mediated lysis. On the other hand, Losac did not alter the release or expression of von Willebrand factor, tissue factor, intercellular adhesion molecule-1, interleukin-8, and prostacyclin. These characteristics indicate that Losac, a protein with procoagulant activity, also functions as a growth stimulator and an inhibitor of cellular death for endothelial cells. Losac may have biotechnological applications, including the reduction of cell death and consequently increased productivity of animal cell cultures, and the use of hemolymph of L. obliqua for this purpose is already being explored. Further study is required to elucidate the mechanism for the inhibition of apoptosis by Losac.  相似文献   

9.
凝血系统相关基因突变及表达异常与高血凝   总被引:2,自引:0,他引:2  
Zhao YH  Liu BW 《生理科学进展》2003,34(4):324-328
摘要高血凝是动脉粥样硬化(As)的危险因子,在As的发展中具有重要作用。凝血系统、抗凝系统、纤溶系统及其它相关基因的突变及表达异常导致高血凝的产生。凝血系统的凝血因子V基因、凝血酶原基因、组织因子基因,抗凝系统的血栓调节蛋白基因、抗凝血酶Ⅲ基因,纤溶系统的纤溶酶原激活物抑制剂-1基因,均与高血凝密切相关。  相似文献   

10.
Xylarinase is a bi-functional fibrinolytic metalloprotease isolated from the culture filtrate of endophytic fungus Xylaria curta which is monomeric with a molecular mass of ~33.76?kDa. The enzyme displayed both plasmin and tissue plasminogen activator like activity under in vitro conditions. It hydrolyses Aα and Bβ chains of the fibrinogen. Optimal fibrinolytic activity of xylarinase is observed at 35?°C, pH 8. Ca2+ stimulated the fibrinolytic activity of xylarinase while Fe2+ and Zn2+ inhibited suggesting it to be a metalloprotease. The Km and Vmax values of xylarinase were 240.9?μM and 1.10?U/ml for fibrinogen and 246?μM and 1.22?U/ml for fibrin, respectively. Xylarinase was found to prolong the activated partial thromboplastin time and prothrombin time. The N-terminal sequence of xylarinase (SNGPLPGGVVWAG) did not show any homology with previously known fibrinolytic enzymes. Thus xylarinase is a novel fibrinolytic metalloprotease which could be possibly used as a new clot busting enzyme.  相似文献   

11.
This study examined circadian variation in coagulation and fibrinolytic parameters among Jcl:ICR, C3H/HeN, BALB/cA, and C57BL/6J strains of mice. Plasma plasminogen activator inhibitor 1 (PAI‐1) levels fluctuated in a circadian manner and peaked in accordance with the mRNA levels at the start of the active phase in all strains. Fibrinogen mRNA levels peaked at the start of rest periods in all strains, although plasma fibrinogen levels remained constant. Strain differences in plasma antithrombin (AT) activity and protein C (PC) levels were then identified. Plasma AT activity was circadian rhythmic only in Jcl:ICR, but not in other strains, although the mRNA levels remained constant in all strains. Levels of plasma PC and its mRNA fluctuated in a circadian manner only in Jcl:ICR mice, whereas those of plasma prothrombin, factor X, factor VII, prothrombin time (PT), and activated partial thrombin time (APTT) remained constant in all strains. These results suggest that genetic heterogeneity underlies phenotypic variations in the circadian rhythmicity of blood coagulation and fibrinolysis. The circadian onset of thrombotic events might be due in part to the rhythmic gene expression of coagulation and fibrinolytic factors. The present study provides fundamental information about mouse strains that will help to understand the circadian variation in blood coagulation and fibrinolysis.  相似文献   

12.
Our studies of the venom from the Levantine viper Vipera lebetina have demonstrated the existence of both coagulants and anticoagulants of the hemostatic system in the same venom. We showed that V. lebetina venom contains factor X activator (VLFXA) and factor V activator, fibrinolytic enzymes. VLFXA was separated by gel filtration on Sephadex G-100 superfine and ion exchange chromatography on CM-cellulose and on TSK-DEAE (for HPLC) columns. VLFXA is a glycoprotein composed of a heavy chain (57.5 kDa) and two light chains (17.4 kDa and 14.5 kDa) linked by disulfide bonds. VLFXA has multiple molecular forms distinguished by their isoelectric points. The differences in their pI values may be caused by dissimilarities in the respective charged carbohydrate content or in the primary sequence of amino acids. We synthesized 6–9 amino acid residues containing peptides according to physiological cleavage regions of human factor X and human factor IX. The peptides (Asn-Asn-Leu-Thr-Arg-Ile-Val-Gly-Gly – factor X fragment, and Asn-Asp-Phe-Thr-Arg-Val-Val-Gly-Gly – factor IX fragment) were used as substrates for direct assay of VLFXA. Cleavage products of peptide hydrolysis and the molecular masses of cleavage products of human factor X were determined by MALDI-TOF MS. The MALDI-TOF MS was highly efficient for the recovery and identification of peptides released by VLFXA hydrolysis. We can conclude that VLFXA cleaves the Arg52-Ile53 bond in the heavy chain of human factor X and the Arg226-Val227 bond in human factor IX precursor. VLFXA could not activate prothrombin nor had any effect on fibrinogen, and it had no arginine esterase activity toward benzoylarginine ethyl ester.  相似文献   

13.
Trumbo TA  Maurer MC 《Biochemistry》2002,41(8):2859-2868
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The more easily activated factor XIII V34L has been correlated with protection from myocardial infarction. V34L and V29F factor XIII mutant peptides were designed to further characterize substrate binding to thrombin. HPLC kinetic studies have been carried out on thrombin hydrolysis of FXIII activation peptide (28-41), FXIII (28-41) V34L, FXIII (28-41) V29F, and FXIII (28-41) V29F V34L. The V34L mutations lead to improvements in both K(m) and k(cat) whereas the V29F mutation primarily affects K(m). Interactions of the peptides with thrombin have been monitored by 1D proton line broadening NMR and 2D transferred NOESY studies. The results were compared with previously published X-ray crystal structures of thrombin-bound fibrinogen Aalpha (7-16), thrombin receptor PAR1 (38-60), and factor XIII (28-37). In solution, the (34)VVPR(37) and (34)LVPR(37) segments of the factor XIII activation peptide serve as the major anchor points onto thrombin. The N-terminal segments are proposed to interact transiently with the enzyme surface. Long-range NOEs from FXIII V29 or F29 toward (34)V/LVPR(37) have not been observed by NMR studies. Overall, the kinetic and NMR results suggest that the factor XIII activation peptide binds to thrombin in a manner more similar to the thrombin receptor PAR1 than to fibrinogen Aalpha. The V29 and V34 positions affect, in different ways, the ability of thrombin to effectively hydrolyze the activation peptide. Mutations at these sites may prove useful in controlling factor XIII activation.  相似文献   

14.
Possible interaction of alpha-2-antiplasmin with fibrinogen, fibrin and their fragments independent of factor XIII as well as the inhibitor effect on the Glu-plasminogen activation by tissue activator were studied. It was shown that alpha-2-antiplasmin is adsorbed on desAA- and desAABBfibrin films (Kd 69.0 +/- 1.0 nM 68.6 +/- 5.3 nM, respectively). Glu-Plasminogen has no effect on the inhibitor binding with desAABBfibrin. Alpha-2-antiplasmin shows strong affinity for fibrin D-dimer (Kd 65.0 +/- 4.0 nM) and D-fragment of fibrinogen (Kd 119.0 +/- 21.0 nM), but it does not interact with E-fragment. The inhibitor inside the fibrin clot decreases 10 times the activation rate of Glu-plasminogen by the tissue activator both is the presence and without factor XIII at physiological ratio of Glu-plasminogen, tissue activator, fibrin and alpha-2-antiplasmin. Thus we have shown that fibrinogen/fibrin binds alpha-2-antiplasmin independent of the factor XIII. Binding sites of the inhibitor are localized in D-fragment of fibrinogen and/or fibrin D-dimer. Alpha-2-antiplasmin inhibits the Glu-plasminogen activation by tissue activator on fibrin.  相似文献   

15.
Human plasma fibrin stabilizing factor (factor XIII) may be separated from fibrinogen through reversible fibrinogen polymer formation at pH 6.6, gamma/2 0.3, 0 degrees C, and subsequent Bio-Gel A 1.5m filtration. Factor XIII activity is eluted after the monomer fibrinogen peak. Polymer fractions from eight preparations, processed in duplicate, contain a mean 0.002 units factor XIII per mg fibrinogen, or about 0.7% the factor XIII content of standard plasma. Factor XIII-free fibrinogen polymers are easily dissociated (greater than 98%) to the monomer form by incubation at 37 degrees C, 18 hours. The fibrinogen preparations utilized were devoid of plasma fibronectin; thus these studies also show that reversible human fibrinogen polymer formation occurs in its absence.  相似文献   

16.
PURPOSE OF REVIEW: The goal of this review is to present an update on basic and epidemiological findings associating variants in prothrombotic genes with atherogenesis and atherothrombotic disease. RECENT FINDINGS: The relation between atherosclerosis and thrombosis has long been recognized but only recently has it been understood that certain hemostatic factors affect not only thrombus formation, but also have a direct atherogenic role. Atherosclerosis is a complex disorder that results from the interaction of multiple genetic and environmental factors. Numerous polymorphisms and mutations in genes related to the hemostatic system and to vascular redox determinants that modulate nitric oxide bioavailability have been identified in the past decade; their role in atherogenesis and the risk of cardiovascular disease, however, remain uncertain. We will discuss the functional implications and association with disease risk of polymorphisms in coagulation factors (fibrinogen, prothrombin, and factor V); fibrinolytic factors (plasminogen activator inhibitor 1 and lipoprotein(a)); platelet surface receptors; and vascular redox determinants (methylenetetrahydrofolate reductase, endothelial nitric oxide synthase, and the antioxidant enzymes cellular glutathione peroxidase and paraoxonase). SUMMARY: Overall, these genetic variants have a modest effect on risk when considered individually but gain potency when acting synergistically with other genetic or environmental risk factors. We conclude that a better characterization of these interactions, in addition to the identification of potential novel genetic determinants, constitute key issues in the future understanding of the pathogenesis of atherothrombosis.  相似文献   

17.
We have examined the effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner (threshold dose, 0.1 ng/ml; maximal dose, 10-100 ng/ml). The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP) abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56 degrees C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of 125I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa. The complex could be detected by chromatography on Sephadex G-100, but not by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These findings suggest that low doses of endotoxin suppress fibrinolytic activity in endothelial cells by stimulating the production or expression of a fast-acting, relatively labile inhibitor of plasminogen activator.  相似文献   

18.
This study examined circadian variation in coagulation and fibrinolytic parameters among Jcl:ICR, C3H/HeN, BALB/cA, and C57BL/6J strains of mice. Plasma plasminogen activator inhibitor 1 (PAI-1) levels fluctuated in a circadian manner and peaked in accordance with the mRNA levels at the start of the active phase in all strains. Fibrinogen mRNA levels peaked at the start of rest periods in all strains, although plasma fibrinogen levels remained constant. Strain differences in plasma antithrombin (AT) activity and protein C (PC) levels were then identified. Plasma AT activity was circadian rhythmic only in Jcl:ICR, but not in other strains, although the mRNA levels remained constant in all strains. Levels of plasma PC and its mRNA fluctuated in a circadian manner only in Jcl:ICR mice, whereas those of plasma prothrombin, factor X, factor VII, prothrombin time (PT), and activated partial thrombin time (APTT) remained constant in all strains. These results suggest that genetic heterogeneity underlies phenotypic variations in the circadian rhythmicity of blood coagulation and fibrinolysis. The circadian onset of thrombotic events might be due in part to the rhythmic gene expression of coagulation and fibrinolytic factors. The present study provides fundamental information about mouse strains that will help to understand the circadian variation in blood coagulation and fibrinolysis.  相似文献   

19.
Bothrojaracin is a potent and specific alpha-thrombin inhibitor (Kd approximately 0.6 nM) isolated from Bothrops jararaca venom. It binds to both of thrombin's anion-binding exosites (1 and 2), thus inhibiting the ability of the enzyme to act upon several natural macromolecular substrates, such as fibrinogen, platelet receptor, protein C, and factor V. Additionally, bothrojaracin interacts with prothrombin (Kd approximately 30 nM), as previously determined by a solid-phase assay. However, there is no information concerning the effect of this interaction on prothrombin activation and whether the binding of bothrojaracin can occur in plasma. Here, we show that bothrojaracin specifically interacts with prothrombin in human plasma. It is an effective anticoagulant after activation of the intrinsic pathway of blood coagulation, and analysis of prothrombin conversion in plasma shows that bothrojaracin strongly reduces alpha-thrombin formation. To determine whether this effect is due exclusively to inhibition of feedback reactions involving the thrombin-induced activation of factors V and VIII, we analyzed the effect of bothrojaracin on the activation of purified prothrombin by Oxyuranus scutellatus venom. As with plasma, bothrojaracin greatly inhibited thrombin formation, suggesting a direct interference in the prothrombin activation by the enzyme found in this venom (scuterin, a prothrombin activator described as a factor Xa/factor Va-like complex). Altogether, we suggest that bothrojaracin exerts its anticoagulant effect in plasma by two distinct mechanisms: (1) it binds generated thrombin and inhibits exosite 1 dependent activities such as fibrinogen clotting and factor V activation, and (2) it interacts with prothrombin and decreases its proteolytic activation. Thus, bothrojaracin may be useful in the search for thrombin inhibitors that bind both the zymogen and the active enzyme.  相似文献   

20.
Factor XIII zymogen activation is a complex series of events that involve fibrinogen acting in several different roles. This report focuses on the role of fibrinogen as a cofactor in factor XIII activation by thrombin. We demonstrate that fibrinogen has two distinct activities that lead to an increased rate of factor XIII activation. First, the thrombin proteolytic activity is increased by fibrin. The cleavage rates of both a small chromogenic substrate and the factor XIII activation peptide are increased in the presence of either the major fibrin isoform, gammaA/gammaA fibrin, or a minor variant form, gammaA/gamma' fibrin. This enhancement of thrombin activity by fibrin is independent of fibrin polymerization and requires only cleavage of the fibrinopeptides. Subsequently, gammaA/gamma' fibrinogen accelerates plasma factor XIII activation by a non-proteolytic mechanism. This increased rate of activation results in a slightly more rapid cross-linking of fibrin gammaA and gamma' chains and a significantly more rapid cross-linking of fibrin alpha chain multimers. Together, these results show that although both forms of fibrin increase the rate of activation peptide cleavage by thrombin, gammaA/gamma' fibrinogen also increases the rate of factor XIII activation in a non-proteolytic manner. A revised model of factor XIII activation is presented below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号