首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-methyl-D-aspartate (NMDA) receptor complex as defined by the binding of [3H]MK-801 has been solubilized from membranes prepared from both rat and porcine brain using the anionic detergent deoxycholate (DOC). Of the detergents tested DOC extracted the most receptors (21% for rat, 34% for pig), and the soluble complex, stabilized by the presence of MK-801, could be stored for up to 1 week at 4 degrees C with less than 25% loss in activity. Receptor preparations from both species exhibited [3H]MK-801 binding properties in solution very similar to those observed in membranes (Bmax = 485 +/- 67 fmol/mg of protein, KD = 11.5 +/- 2.9 nM in rat; Bmax = 728 +/- 108 fmol/mg of protein, KD = 7.1 +/- 1.6 nM in pig, n = 3). The pharmacological profile of the solubilized [3H]MK-801 binding site was virtually identical to that observed in membranes. The rank order of potency of: MK-801 greater than (-)-MK-801 = thienylcyclohexylpiperidine greater than dexoxadrol greater than SKF 10,047 greater than ketamine, for inhibition of [3H]MK-801 binding, was observed in all preparations. The receptor complex in solution exhibited many of the characteristic modulations observed in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Chemically simplified lipid mixtures are used here as models of the cell plasma membrane exoplasmic leaflet. In such models, phase separation and morphology transitions controlled by line tension in the liquid-disordered (Ld)?+?liquid-ordered (Lo) coexistence regime have been described [1]. Here, we study two four-component lipid mixtures at different cholesterol fractions: brain sphingomyelin (BSM) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). On giant unilamellar vesicles (GUVs) display a nanoscopic-to-macroscopic transition of Ld?+?Lo phase domains as POPC is replaced by DOPC, and this transition also depends on the cholesterol fraction. Line tension decreases with increasing cholesterol mole fractions in both lipid mixtures. For the ternary BSM/DOPC/Chol mixture, the published phase diagram [19] requires a modification to show that when cholesterol mole fraction is >~0.33, coexisting phase domains become nanoscopic.  相似文献   

3.
Small angle x-ray scattering has been used to investigate the structure of synaptoneurosomal (SNM) membranes from rat cerebral cortex. Electron micrographs of the preparation showed SNM with classical synaptic appositions intact, other vesicles, occasional mitochondria, and some myelin. An immunoassay for myelin basic protein placed the myelin content of normal rat SNM at less than 2% by weight of the total membrane present. X-Ray diffraction patterns showed five diffraction orders with a unit cell repeat for the membrane of 71 to 78 A at higher hydration states. At lower hydration, 11 orders appeared; the unit cell repeat was 130 A, indicating that the unit cell contained two membranes. Electron density profiles for the 130-A unit cell were determined; they clearly showed the two opposed asymmetrical membranes of the SNM vesicles. SNM membrane/buffer partition coefficients (Kp) of imidazobenzodiazepine and 1,4-dihydropyridine (DHP) calcium channel drugs were measured; Kp's for DHP drugs were approximately five times higher in rabbit light sarcoplasmic reticulum than in SNM. Ro 15-1788 and the DHP BAY K 8644 bind primarily to the outer monolayer of vesicles of intact SNM membranes. Nonspecific equilibrium binding of Ro 15-1788 occurs mainly in the upper acyl chain of the bilayer in lipid extracts of SNM membrane.  相似文献   

4.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

5.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

6.
Sun W  Wessinger WD 《Life sciences》2004,75(12):1405-1415
The ability of non-competitive NMDA antagonists and other selected compounds to inhibit [3H]MK-801 binding to the NMDA receptor in brain membranes was evaluated in female, dark Agouti rats. In homologous competition binding studies the average apparent affinity (KD) of [3H]MK-801 for its binding site was 5.5 nM and the binding site density (Bmax) was 1.83 pmol/mg protein. Inhibition of [3H]MK-801 binding by non-competitive NMDA antagonists was best described with a one-site competition model and the average Hill coefficients were -1. A series of eight non-competitive NMDA antagonists inhibited [3H]MK-801 binding with the following rank order of affinity (K(i), nM): MK-801 (5.5) > dexoxadrol (21.5) > or = TCP (24.2) > phencyclidine (100.8) > (+)-SKF 10,047 (357.7) > dextrorphan (405.2) > ketamine (922.2) > dextromethorphan (2913). These inhibition binding constants determined in dark Agouti rat brain membranes were significantly correlated (P = 0.0002; r2 = 0.95) with previously reported values determined in Sprague-Dawley rats [Wong et al., 1988, J. Neurochem. 50, 274-281]. Despite significant differences in metabolic capability between these strains, the central nervous system NMDA receptor ion channel shares similar characteristics.  相似文献   

7.
Unesterified [3H]cholesterol is rapidly transferred between cholesterol-phosphatidylcholine vesicles and rat arterial smooth muscle cells in vitro. Exchange rate is influenced by the vesicle/cell ratio in a saturable way. The maximal transfer of cholesterol, which is 3.76 micrograms per mg cell protein during 4 h, is achieved with a vesicle/cell ratio of 3.4 X 10(7). Bovine serum albumin enhances the exchange by a factor of 4.5 compared to a protein-free system. The activation energy for the process is + 38.5 kJ X mol-1 with vesicles of 1:1 mole ratio of cholesterol to phosphatidylcholine (C/P). A fraction of the incorporated free [3H]cholesterol is esterified within 4 h with donor vesicles of over 1:1 C/P. When cells were incubated with vesicles of low C/P mole ratio (1:2) a fraction of the incorporated free [3H]cholesterol was esterified within 16 h. Our results are compatible with the aqueous diffusion mechanism of cholesterol exchange. Furthermore, we suggest that, in rat smooth muscle cells, the cell membrane cholesterol pool is not metabolically isolated from internal cholesterol pools, at least as judged by the ability of the cells to esterify incorporated free cholesterol.  相似文献   

8.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

9.
In extensively washed rat cortical membranes [3H](+)-5-methyl-10,11-dihydro-5 H-dibenzo [a,d]cyclohepten-5,10-imine ([3H]MK-801) labeled a homogeneous set of sites (Bmax = 1.86 pmol/mg protein) with relatively low affinity (KD = 45 nM). L-Glutamate, glycine, and spermidine produced concentration-dependent increases in specific [3H]MK-801 binding due to a reduction in the KD of the radioligand. In the presence of high concentrations of L-glutamate, glycine, or spermidine, the KD values for [3H]MK-801 were reduced to 11 nM, 18 nM, and 15 nM, respectively. Maximally effective concentrations of combinations of the three compounds further increased [3H]MK-801 binding affinity as follows: L-glutamate + glycine, KD = 6.2 nM; L-glutamate + spermidine, KD = 2.2 nM; glycine + spermidine, KD = 8.3 nM. High concentrations of spermidine did not inhibit either [3H]glycine orf [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding to the N-methyl-D-aspartate (NMDA) receptor complex. The concentration of L-glutamate required to produce half-maximal enhancement (EC50) of [3H]MK-801 binding was reduced from 218 nM to 52 nM in the presence of 30 microM glycine and to 41 nM in the presence of 50 microM spermidine. The EC50 value for glycine enhancement of [3H]MK-801 binding was 184 nM. This was lowered to 47 nM in the presence of L-glutamate and to 59 nM in the presence of spermidine. Spermidine enhanced [3H]MK-801 binding with an EC50 value of 19.4 microM which was significantly reduced by high concentrations of L-glutamate (EC50 = 3.9 microM) or glycine (EC50 = 6.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract

Cooperative modulation of [3H]MK-801 binding to extensively washed pig cortical brain membranes in the presence of various concentrations of L-glutamate, glycine, spermine, CPP and DCKA was evaluated in association experiments. In saturation experiments [3H]MK-801 labelled a homogeneous population of binding sites with a Kd-value of 1.26 ± 0.18 nmol 1?1 and a Bmax-value of 2130 ± 200 fmol/mg protein. The pharmacological profile of this site was further evaluated in competition experiments with known NMDA receptor channel blockers. In nonequilibrium binding experiments EC50-values of reference compounds acting at the L-glutamate, at the glycine, and at the polyamine site, were determined by increasing or decreasing [3H]MK-801 binding. Ifenprodil reduced [3H]MK-801 binding in a biphasic manner. All the data obtained are in agreement with results from [3H]MK-801 binding to rodent as well as human brain membranes. This study therefore strongly suggests, that pig cortical membranes are a suitable alternative to rodent brain membranes, and an acceptable substitute for human brain membranes in [3H]MK-801 binding experiments.  相似文献   

11.
Excitatory amino acid receptor binding parameters were investigated in a spontaneous dog model of chronic hepatic encephalopathy. L-[3H]Glutamate, (+)-[3H]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine maleate ([3H]MK-801), [3H]kainate, and alpha-[3H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) binding experiments were performed using crude cerebrocortical synaptosomal membrane preparations from dogs with congenital portosystemic encephalopathy (PSE) and control dogs. There was no change in the affinity or density of L-[3H]-glutamate or [3H]MK-801 binding sites in dogs with congenital PSE compared with control dogs. However, in the PSE dogs there was a significant reduction in the density of [3H]kainate binding sites compared with control dogs and abolition of the low-affinity [3H]AMPA binding site. The relative binding capacity of PSE synaptosomal membranes for [3H]kainate and [3H]AMPA was expressed as the ratio Bmax/KD. There was a significant inverse correlation between the Bmax/KD ratio for [3H]AMPA binding and the worst grade of encephalopathy experienced by each dog. These results suggest that there is a significant perturbation of cerebrocortical non-N-methyl-D-aspartate receptor binding in dogs with congenital PSE which may have relevance to the pathogenesis of hepatic encephalopathy.  相似文献   

12.
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract: The effects of ethanol, glycine, and spermidine on the specific binding of [3H]MK-801 were characterized in Triton-treated membranes prepared from the hippocampus and cortex of ethanol-withdrawal seizure-prone (WSP) and -resistant (WSR) mice. Glycine, an allosteric agonist at the NMDA receptor-linked ion channel complex, caused an increase in specific [3H]MK-801 binding to hippocampal membrane preparations. There were no significant differences in EC50 values between the selected lines for the effect of glycine (WSP, 391.7 ± 48.4 nM; WSR, 313.4 ± 77 nM) in the presence of 10 µM NMDA or in the maximal response to the agonist (WSP, 1.75 ± 0.26 pmol/mg of protein; WSR, 1.67 ± 0.22 pmol/mg of protein). The EC50 values for the spermidine-induced increase in [3H]MK-801 binding in membranes from hippocampus in the absence (WSP, 11.7 ± 0.83 µM; WSR, 9.98 ± 1.29 µM) or in the presence of 10 µM glycine and 10 µM NMDA (WSP, 2.1 ± 0.35 µM; WSR, 2.37 ± 0.42 µM) also did not differ. Similar results were obtained in cortical membranes. Saturation isotherms indicated that there was no difference in the density of [3H]MK-801 binding sites, or in their affinity for the radioligand, between the mouse lines. In addition, administration of ethanol by inhalation (24 h) to WSP and WSR mice did not cause an increase in the density of [3H]MK-801 binding sites, and there was no difference in the density or affinity of binding sites between the mouse lines. Withdrawal from ethanol (6 h), which causes an increase in the severity of handling-induced convulsions in WSP mice, also did not alter the binding site density or affinity for radioligand. The results suggest that the characteristics of the NMDA receptor-linked ion channel complex in the tissue preparations described here do not differ in WSP and WSR mice. Thus, genetic differences in seizure susceptibility during ethanol withdrawal can be dissociated from the total density of hippocampal or cortex NMDA receptors under activating conditions.  相似文献   

14.
These studies addressed the possible involvement between sensitivity to the hypnotic action of ethanol and function of the NMDA receptor. The studies were carried out using high-alcohol sensitive (HAS) and low-alcohol sensitive (LAS) rats, two rats having differential sensitivity to the acute hypnotic action of ethanol. The animal models were developed by a selective breeding experiment. Using a quantitative autoradiograph technique, it was demonstrated that [3H]MK-801 binding to the NMDA receptor was highest in hippocampus in both HAS and LAS rats, but significant [3H]MK-801 binding was also detected in cortex, caudate-putamen, and thalamus of HAS and LAS rats. The density of [3H]MK-801 binding was lower only in cerebellar granule layers of untreated HAS rats as compared to the same brain area in untreated LAS rats. Activation of protein kinase C (PKC) by 100 nM PDBu, increased [3H]MK-801 binding in cortex, caudate-putamen, thalamus, central gray, and cerebellum of HAS rats but activation of PKC did not influence [3H]MK-801 binding in LAS rats. These activation of PKC differentiates between [3H]MK-801 binding of HAS and LAS rats in frontal cortex (layer II-IV and cingulate), caudate-putamen, and ventral lateral thalamic nuclei. The basal level of PKC- mRNA was higher in HAS rats than that of LAS rats. These results suggest that the activation of PKC potentiates NMDA receptor function of the rat line which is more sensitive to alcohol (HAS) but does not affect [3H]MK-801 binding of alcohol resistant (LAS) rats.  相似文献   

15.
The N-methyl-D-aspartate (NMDA) receptor is thought to contain several distinct binding sites that can regulate channel opening. In the present experiments, the effects of ligands for these sites have been examined on [3H]MK-801 binding to a soluble receptor preparation, which had been passed down a gel filtration column to reduce the levels of endogenous small-molecular-weight substances. Glycine site agonists, partial agonists, and antagonists gave effects similar to those observed in membranes [EC50 values (in microM): glycine, 0.31; D-serine, 0.20; D-cycloserine, 1.46; (+)-HA-966, 4.06; and 7-chlorokynurenic acid, 1.81]. Spermine and spermidine enhanced [3H]MK-801 binding to the soluble receptor preparation (EC50, 4.3 and 20.1 microM, respectively), whereas putrescine and cadaverine gave small degrees of inhibitions. When spermine and spermidine were tested under conditions where [3H]MK-801 binding approached equilibrium, their ability to enhance [3H]MK-801 binding was much reduced, a result suggesting that the polyamines increase the rate to equilibrium. Putrescine antagonised the effects of spermine. Ifenprodil reduced [3H]MK-801 binding under both equilibrium and nonequilibrium conditions, although the high-affinity component of inhibition described in membranes was not observed. Ifenprodil antagonised spermine effects in an apparently noncompetitive manner. Desipramine was able to give total inhibition of specific [3H]MK-801 binding under nonequilibrium conditions with an IC50 of 4 microM, and this value was unaltered when [3H]MK-801 binding was allowed to reach equilibrium. These results suggest that the sites mediating the effects of glycine and its analogues, polyamines and desipramine are integral components of the NMDA receptor protein.  相似文献   

16.
The effect of ethanol-induced lipid interdigitation on the partition coefficient (Kp) of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and its two derivatives, 6-acetyl-2-(dimethylamino)naphthalene (Acdan) and 6-lauroyl-2-(dimethylamino)naphthalene (Laurdan), in L-alpha-dipalmitoylphosphatidylcholine (DPPC) vesicles has been examined by a precipitation method over the ethanol concentration range of 0-1.8 M. At 20 degrees C and in the absence of ethanol, the Kp values for Acdan, Prodan, and Laurdan are 2.0 x 10(3), 2.8 x 10(4), and 4.7 x 10(6), respectively. This result suggests that the Kp of Prodan and its derivatives is not simply a linear function of the polymethylene units. As DPPC undergoes the ethanol-induced phase transition from the noninterdigitated to the fully interdigitated gel state, Kp for Prodan and Acdan decreases by a factor of 5 and 2, respectively, whereas Kp for Laurdan exhibits no detectable changes with ethanol. The differences in Kp are in parallel with the differences in the fluorescence emission spectra of these probes over the ethanol concentration range examined. Previous fluorescence and infrared data indicated that membrane perturbation caused by the probes increases in the order: Laurdan > Prodan > Acdan. Thus, the degree of membrane perturbation also seems to be in parallel with Kp. Among these three probes, Prodan fluorescence reflects most correctly the ethanol-induced lipid interdigitation. In conclusion, the partitioning of small solutes in lipid membranes is significantly reduced by ethanol-induced lipid interdigitation, probably as a result of an increased membrane surface density due to the increased intramolecular lipid acyl chain ordering and a tighter overall intermolecular packing.  相似文献   

17.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

18.
Abstract

This study reports rate-of-dialysis of an iodinated N-methyl-D-aspartate antagonist drug, [125-1] MK-801, from solutions of lipid vesicles and from proteoliposomes containing purified membrane proteins. A 170 kd protein precipitated from proteoliposomes cross reacts with monoclonal antibodies against cloned NMDA-NR2(A) and NR2(B) subunits. Drug binding in proteoliposomes includes contributions from lipid and from protein, in addition to lipid. A significant change in drug binding was observed in proteoliposomes in response to 10 uM agonist, NMDA. Rate-of-dialysis from agonist-stimulated proteoliposomes was sensitive to perturbation by decreased aqueous ligand concentration in a manner consistent with a lipid-mediated receptor/antagonist equilibrium.  相似文献   

19.
The effects of a cerebral anti-ischemic drug ifenprodil on the receptor ionophore complex of an N-methyl-D-aspartate (NMDA)-sensitive subclass of central excitatory amino acid receptors were examined using [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10- imine (MK-801) binding in rat brain synaptic membrane preparations as a biochemical measure. The binding in membrane preparations not extensively washed was markedly inhibited not only by competitive NMDA antagonists such as (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic, D-2-amino-5-phosphonovaleric and D-2-amino-7-phosphonoheptanoic acids, but also by competitive antagonists at the strychnine-insensitive glycine (Gly) site including 7-chlorokynurenic acid and 6,7-dichloroquinoxaline-2,3-dione. Among several proposed ligands for alpha-adrenergic receptors tested, ifenprodil most potently inhibited the binding in these membrane preparations due to a decrease in the density of the binding sites without significantly affecting the affinity. Ifenprodil also inhibited the binding of [3H]N-[1-(2-thienyl)cyclohexyl]piperidine as well as of [3H]MK-801 to open NMDA channels in a concentration-dependent manner at concentrations above 10 nM in membrane preparations extensively washed but not treated by a detergent, with a Hill coefficient of less than unity. Further treatment of extensively washed membrane preparations with a low concentration of Triton X-100 resulted in an almost complete abolition of [3H]MK-801 binding, and the binding was restored to the level found in membrane preparations not extensively washed following the addition of both L-glutamic acid (Glu) and Gly. Ifenprodil was effective in inhibiting [3H]MK-801 binding via reducing both initial association and dissociation rates in Triton-treated membrane preparations, irrespective of the presence of Glu and Gly added. The binding in Triton-treated membrane preparations was additionally potentiated by the polyamine spermidine in a concentration-dependent manner at concentrations above 10 microM in the presence of both Glu and Gly at maximally effective concentrations. Ifenprodil invariably diminished the abilities of these three stimulants to potentiate [3H]MK-801 binding at concentrations over 1 microM in a manner that the maximal responses each were reduced. These results suggest that ifenprodil does not interfere with the NMDA receptor complex as a specific isosteric antagonist at the polyamine domain in contrast to the prevailing view.  相似文献   

20.
Abstract: N -Methyl- d -asparate receptors (NMDARs) are a major target of ethanol effects in the nervous system. Haloperidol-insensitive, but dizocilpine (MK-801)-sensitive, binding of N -[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to synaptic membranes has the characteristics of ligand interaction with the ion channel of NMDARs. In the present studies, ethanol produced a concentration-dependent decrease in the maximal activation of [3H]TCP binding to synaptic membranes by NMDA and Gly, but a moderate change in the activation by l -Glu when l -Glu was present at concentrations < 100 µ M . However, ethanol (100 m M ) inhibited completely the activation of [3H]TCP binding produced by high concentrations of l -Glu (200–400 µ M ). It also inhibited strongly the activation of [3H]TCP binding by spermidine or spermidine plus Gly. In a purified complex of proteins that has l -Glu-, Gly-, and [3H]TCP-binding sites, ethanol (100 m M ) decreased significantly the maximal activation of [3H]TCP binding produced by either l -Glu or Gly. Activation constants ( K act) for l -Glu and Gly acting on the purified complex were 12 and 28 µ M, respectively. Ethanol had no significant effect on the K act of l -Glu but caused an increase in the K act of Gly. These studies have identified at least one protein complex in neuronal membranes whose response to both l -Glu and Gly is inhibited by ethanol. These findings may explain some of the effects of acute and chronic ethanol treatment on the function and expression of the subunits of this complex in brain neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号