首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Fukuda 《Glycobiology》1991,1(4):347-356
Leukosialin, also called CD43 or sialophorin, is a major sialoglycoprotein expressed widely in various leukocytes (granulocytes, monocytes/macrophages and T-lymphocytes). Leukosialin is heavily glycosylated by O-linked oligosaccharides (70-80 oligosaccharides/molecule) and the structures of those O-glycans are characteristic to each cell lineage and differentiation stage. In particular, the branched hexasaccharide, NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6)GalNAc is specifically expressed in activated T-lymphocytes as well as in thymocytes and T-lymphocytes from patients with leukaemia, and immuno-deficiency syndromes. A portion of these O-glycans are attached to a domain with tandem repeats in the polypeptide of leukosialin. However, the entire translation product, including such tandem repeats, is coded by one exon and a short novel promoter sequence confers the expression of the leukosialin gene. Leukosialin is apparently involved in T-cell-B-cell interaction during immune reaction and binds to ligands on antigen-presenting B-cells. These results imply that leukosialin plays critical roles in immune cell interaction and differences in attached O-glycans most likely influence the interaction of leukosialin with ligands.  相似文献   

2.
A major sialoglycoprotein (previously called gp105) on the human erythroleukemic cell line K562 was purified, and specific antibodies were raised in a rabbit. A number of different hematopoietic cell lines belonging to erythroid, myeloid, T-lymphoid, and B-lymphoid cell lineages were found to possess glycoproteins that were immunoprecipitated by these antibodies. However, the apparent molecular weights differed between cell lines, ranging from 113,000 to 150,000. In almost all cases, the immune precipitated molecule corresponded to the major sialoglycoprotein of the respective cell. Pulse-chase experiments showed that all cells produced an early precursor form of the molecule of 54 kDa, which was susceptible to endo-beta-N-acetylglucosaminidase H to give an apoprotein of 52 kDa. Neuraminidase treatment of the mature forms resulted in a characteristic decrease of the mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (apparent molecular weights from 150,000 to 183,000). Amino acid analysis of the glycoprotein isolated from HL-60 cells showed a high content of serine, threonine, and proline, and the carbohydrate composition was compatible with the presence of a large number (approximately 90) of O-linked carbohydrate chains. The name leukosialin is proposed for this sialoglycoprotein, which seems to be widely distributed, but differently glycosylated, on leukocytes with diverse functions. In the following paper (Carlsson, S.R., Sasaki, H., and Fukuda, M. (1986) J. Biol. Chem. 261, 12787-12795), we demonstrate that the structures of O-linked oligosaccharides vary significantly depending on the cells from which leukosialin was isolated.  相似文献   

3.
The O-glycosylation of leukosialin, a major sialoglycoprotein found on leukocytes, has been studied in the human erythroleukemic cell line K562. The appearance of its O-linked chains has been followed in pulse-chase experiments with [35S]methionine by immunoprecipitation with an anti-peptide antiserum as well as with a lectin from Salvia sclarea seeds (SSA) specific for GalNAc-Ser/Thr and the peanut (Arachis hypogaea) agglutinin (PNA) which recognizes Gal beta 1----3GalNAc-Ser/Thr structures. An O-glycan-free precursor was converted into the fully O-glycosylated mature form within the 10-min labeling period and no intermediates carrying only GalNAc-Ser/Thr structures could be detected. The ionophore monensin was used in order to slow down intracellular traffic and thus O-glycan synthesis. The drug partly inhibited the transport from rough endoplasmic reticulum (RER) to the Golgi and also the cell-surface expression of leukosialin. It was found to have a marked effect on the synthesis of O-linked carbohydrate structures of leukosialin since the amount of O-glycans containing only GalNAc or NeuNAc alpha 2----6GalNAc was significantly increased after monensin treatment. Under these conditions the biosynthesis of the N-glycan on leukosialin was completely arrested in an endoglycosidase-H-sensitive step of processing, whereas the O-glycans already contained galactose and sialic acid although at a reduced level. On the other hand, the small amounts of leukosialin expressed on the cell surface of monensin-treated cells carried the same glycans as those remaining blocked inside the cell. In addition, immunocytochemical studies using SSA and PNA on untreated K562 cells suggested the absence of detectable amounts of GalNAc-Ser/Thr-bearing glycoproteins in the RER as well as in the Golgi. In contrast Gal beta 1----3GalNAc structures could be detected on intracellular membranes which were tentatively identified as the cis-Golgi. Together these results lead us to the following conclusions: N-glycan transfer occurs in the RER before the initiation of O-glycans which takes place at the entrance of the protein into the Golgi; further elongation of O-glycans with galactose and sialic acid follows very rapidly, probably before the final processing of N-glycans to complex-type structures.  相似文献   

4.
Glycoproteins from the human T leukemia cells Jurkat were found to bind to the GalNAc alpha 1----Ser/Thr-specific lectin from Salvia sclarea seeds. The analysis of the O-linked saccharides of immunopurified leukosialin, the major [3H]glucosamine-labeled glycoprotein in Jurkat cell lysate, revealed the presence of mainly GalNAc alpha 1----Ser/Thr with only minor amounts (approximately 17%) of more complex O-glycans. A comparison between Jurkat and K562 cell glycosyltransferase involved in the biosynthesis of O-linked carbohydrates showed that a markedly lower activity of UDP-Gal:GalNAc alpha 1----Ser/Thr beta 1----3galactosyltransferase is apparently responsible for the presence of truncated O-glycans in the Jurkat cell line. The O-glycosylation defect makes Jurkat cells an ideal model to study the initiation of O-linked saccharides. Pulse-chase experiments with [35S] methionine showed that the addition of GalNAc to leukosialin is responsible for the decreased mobility of the mature glycoprotein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Furthermore, no biosynthetic intermediates between the O-glycan-free precursor and the fully O-glycosylated form could be detected either with an anti-leukosialin antiserum or with the GalNAc-specific lectin. Lowering the chase temperature to 15 degrees C completely inhibited the transfer of GalNAc to the peptide core indicating that O-glycan initiation takes place in the first Golgi elements and not in transitional vesicles between endoplasmic reticulum and Golgi. In addition, treatment of the cells with monensin did not inhibit GalNAc transfer to leukosialin apoprotein. These results indicate that the initiation of O-glycosylation in Jurkat cells starts in the cis-Golgi stacks.  相似文献   

5.
The study of structural/functional characteristics of the cell-surface glycoproteins of leukocytes has led to a better understanding of the differentiation and maturation of hematopoietic cells. We have assessed the ability of a unique metalloprotease that is secreted by the bovine fibrinous pneumonia pathogen Pasteurella haemolytica, to cleave cell-surface glycoproteins expressed on human leukocytes. Biochemical analysis shows that the O-glycosylated cell surface Ag CD34, CD43 (leukosialin), CD44 (hyaluronic acid receptor), and CD45 (leukocyte common Ag), are all cleaved by this protease. Although these enzyme-sensitive structures contain N-linked glycans, they are all extensively glycosylated with O-linked carbohydrates, which are especially abundant on CD34 and CD43. In contrast, the glycoproteins CD18/11a,b,c (leukocyte integrins), CD71 (transferrin receptor), HLA class I, and 8A3 Ag, which contain N-linked glycans but no O-sialo-glycans, were resistant to the action of the enzyme. Inasmuch as previous studies using glycophorin A had indicated that the substrate specificity of this enzyme may be uniquely restricted to the cleavage of O-sialoglycoproteins, we have designated this activity, P. haemolytica glycoprotease. Immunofluorescence analysis with a variety of antibodies to different epitopes of the P. haemolytica glycoprotease-sensitive structures indicate that this enzyme may have widespread applications in epitope-mapping studies, and represents a novel tool with which to study structure/function relationships for O-sialoglycosylated cell-surface proteins. However, most significantly these results suggest that the P. haemolytica glycoprotease may be of use in the affinity purification and recovery of clinically important leukocyte subsets, such as primitive hematopoietic progenitors that express CD34.  相似文献   

6.
Leukosialin (CD43) is a major glycoprotein of T lymphocytes whose extracellular domain of 224 amino acids contains on average one O-linked carbohydrate unit per three amino acids. This suggests an unfolded structure for the extracellular domain which has now been established to extend to a length of 45 nm by transmission electron microscopy following low angle rotary shadowing. The antigenicity of rat leukosialin has been studied using nine monoclonal antibodies (MAbs) whose binding is differentially affected by the cell type on which leukosialin is expressed and by the removal of sialic acid. From these observations it appears that the epitopes are affected by glycosylation, yet seven of the nine MAbs reacted clearly with the extracellular domain of leukosialian expressed in an unglycosylated form in Escherichia coli. The MAbs showing this positive reaction included three of the four antibodies whose epitopes were affected by neuraminidase treatment of leukosialin. It thus appears that linear protein epitopes are recognized and that some of these can be modified in the native structure by glycosylation. The positions of the antigenic determinants have been mapped by expressing fusion proteins of different lengths and the identity of one epitope was proven by the binding of two MAbs to an octapeptide expressed as a fusion protein. For three MAbs, the location of epitopes in the native protein was confirmed by electron microscopy of shadowed leukosialin--Fab complexes. Overall it is concluded that leukosialin is a major component at the periphery of the T lymphocyte and that despite its high level of glycosylation, protein determinants are exposed that could be ligands in cell interactions.  相似文献   

7.
Mouse leukosialin, previously known as the 3E8 antigen, is expressed primarily on cells of the hematopoietic and lymphoid lineages and is shown to be the mouse homologue to the human leukosialin/sialophorin and rat W3/13 molecules. A partial leukosialin cDNA clone was isolated via cross-species hybridization with a portion of a human leukosialin cDNA. This mouse cDNA clone was used to demonstrate that the leukosialin isoforms are encoded by a single mRNA species of approximately 4.2 kilobases (kb) and that the leukosialin gene is located on chromosome 7. Based on these results, mouse leukosialin is given the designation Ly48.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M30693.  相似文献   

8.
Structures of O-linked oligosaccharides of leukosialin isolated from K562 erythroid, HL-60 promyelocytic, and HSB-2 T-lymphoid cell lines were examined. Leukosialin was isolated by specific immunoprecipitation from cells which were metabolically labeled with [3H]glucosamine, and glycopeptides were isolated after Pronase digestion. O-Linked oligosaccharides were released by alkaline borohydride treatment, and the structures of purified oligosaccharides were elucidated by specific exoglycosidase digestion, Smith degradation, and methylation anaylsis. Oligosaccharides from K562 cells were found to be GalNAcOH, Gal beta 1----3GalNAcOH, NeuNAc alpha 2----6GalNAcOH, NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH. On the other hand, oligosaccharides from HL-60 and HSB-2 cells were found to be NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(Gal beta 1----3)GalNAcOH, Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3)Gal beta 1----3)GalNAcOH, and NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6(NeuNAc alpha 2----3Gal beta 1----3)GalNAcOH. These results clearly indicate that leukosialin can be differently glycosylated with O-linked chains, and each erythroid or myeloid (and T-lymphoid) cell line expresses a characteristic set of O-linked oligosaccharides which differ in core structures as well as in sialylation.  相似文献   

9.
Leukosialin (CD43) is a heavily O-glycosylated membrane glycoprotein present on all leukocytes and on platelets. We found that leukosialin is phosphorylated in erythroid, myeloid, and T-lymphoid cell lines, as well as in platelets and peripheral blood lymphocytes. Leukosialin phosphorylation was increased 2.5-15-fold following phorbol ester treatment. The phosphorylation could be inhibited with the protein kinase C inhibitor staurosporine but not with HA 1004 that inhibits cAMP- or cGMP-dependent protein kinases. The phosphoamino acid analysis showed that serine residues were exclusively phosphorylated, either with or without phorbol ester treatment. Two-dimensional peptide maps of phosphorylated leukosialin from K562 and Jurkat cells gave almost identical patterns. The number of labeled peptides increased after treatment with phorbol ester, indicating that new sites were phosphorylated. The major phosphorylation site on leukosialin was identified as Ser-332 in a region of the cytoplasmic domain located 73 amino acids from the transmembrane portion.  相似文献   

10.
11.
T cells from enlarged lymph nodes of MRL/MpJ-lpr/lpr (lpr) mice were found to express more binding sites for strongly hemagglutinating Phaseolus vulgaris agglutinin (PHA-E4) and fewer binding sites for Ricinus communis aglutinin (RCA) than those from normal MRL/MpJ-+/+ (+/+) mouse lymph node. We found that high-molecular-weight (180K-220K) glycoproteins on lpr T cells were strongly stained with these lectins on Western-blotting. These glycoproteins were found to belong to the CD45 family, by absorption with monoclonal anti-CD45 antibody. We also found that the other glycoproteins (105K and 120K glycoproteins on lpr T cells and a 105K glycoprotein on +/+ T cells) were strongly stained with the lectins which preferentially bind to mucin-type (O-linked) sugar chains on the cell surface. These glycoproteins were found to be leukosialins, by absorption with anti-leukosialin serum. From the results of the lectin-binding to these glycoproteins after sialidase treatment, CD45 antigens and leukosialin molecules on lpr T cells were found to have many more terminal alpha 2,3-linked sialic acids than those on +/+ T cells, and this fact explains why lpr T cells have more binding sites for PHA-E4 but fewer binding sites for RCA.  相似文献   

12.
Metabolic labeling of the murine T lymphoma cell line RDM-4 with [35S] sulfate results in intense incorporation into a cell-retained component of apparent Mr approximately 100,000. This macromolecule is identified as a glycoprotein by lectin chromatography. The sulfate is not incorporated as tyrosine sulfate. Release of the radiolabel by alkaline beta-elimination but not by endoglycosidase F is consistent with the sulfation of O- rather than N-linked oligosaccharides. The sulfated glycoprotein displays anomalous migration on SDS-PAGE in two respects: 1) the apparent Mr shifts from 115,000 to 87,000 on increasing the acrylamide concentration from 7 to 12%, and 2) on neuraminidase digestion migration is substantially reduced (apparent Mr 140,000). These properties indicate that the sulfated protein is both heavily glycosylated and extensively sialylated, and are characteristic of the lymphoid mucin, leukosialin (sialophorin, CD43). Specific labeling of the sialoglycoproteins of RDM-4 cells indicates that leukosialin, the most intensely labeled protein, comigrates with the sulfated protein on SDS-PAGE at varying acrylamide concentrations. Our data are therefore consistent with sulfation of at least some of the numerous O-linked oligosaccharides of this abundant glycoprotein in RDM-4 cells. No sulfation of CD43 in resting splenic T cells is observed.  相似文献   

13.
Increased branching at the trimannosyl core of 'complex-type' Asn-linked oligosaccharides has been observed in both human and murine tumour cells, and appears to be associated with enhanced metastatic potential in several murine tumour models [Dennis, Laferte, Waghorne, Breitman & Kerbel (1987), Science 236, 582-585]. The lectin leucoagglutinin (L-PHA) requires the-GlcNAc beta 1-6Man alpha 1-6Man-linked lactosamine antenna in complex-type oligosaccharides for high-affinity binding and can be used to detect these structures in glycoproteins separated on SDS/polyacrylamide-gel electrophoresis. The major L-PHA-binding glycoproteins in the highly metastatic lymphoid tumour cell line called MDAY-D2 were purified and resolved into two major species, termed P2A (110 kDa) and P2B (130 kDa). P2A had L-PHA-reactive Asn-linked oligosaccharides with polylactosamine sequences as well as a large component of sialylated O-linked carbohydrates. The glycoprotein showed structural characteristics similar to those of leukosialin (i.e. CD43), a glycoprotein previously identified on the surface of leukocytes. Based on monosaccharide compositional analysis and glycosidase digestions, P2B was found to be 50-60% Asn-linked oligosaccharide containing polylactosamine sequences and sialic acid. The N-terminal peptide sequence of P2B was determined to be very similar to that of murine lysosomal membrane glycoprotein (LAMP-1), a ubiquitous glycoprotein found largely in the lysosomal membranes but also in the plasma membrane of several murine and human tumour cell lines.  相似文献   

14.
Expression of the Tn antigen on a T-lymphoid cell line, Jurkat, was investigated using an anti-Tn monoclonal antibody, MLS 128. Immunoprecipitation or immunoaffinity chromatography of a lysate of Jurkat cells led to the isolation of a 120 kDa glycoprotein carrying the Tn antigen. This glycoprotein and leukosialin (CD43) were indistinguishable on SDS-PAGE and as to immunoreactivity with MLS 128. Leukosialin from an erythroid cell line, K562, exhibited no reactivity with MLS 128 despite that this leukosialin has several GalNAc alpha-Ser(Thr) structures. Pulse-chase experiments with the Jurkat leukosialin showed that newly synthesized leukosialin acquired the antigenecity after a lag of about 30 min, whereas incorporation of GalNAc into the leukosialin occurred earlier. These results indicate that the Tn antigen is expressed on leukosialin and that its epitopic structure is more complex than GalNAc alpha-Ser(Thr).  相似文献   

15.
All human hematopoietic cells seem to contain a major, heavily O-glycosylated sialoglycoprotein. Glycophorin A is specific for the erythroid lineage of cells, and leukocytes have a major sialoglycoprotein, also called leukosialin or sialophorin. Cell differentiation results in patterns of O-glycosylation in these proteins, which reflect the stage of differentiation within a cell lineage as well as lineage specificity. The altered carbohydrate compositions may influence the interactions of the cells with external ligands. Healthy individuals lacking glycophorin A in their red cells are known, whereas a deficiency of the leukocyte sialoglycoprotein may result in immunological disease. Although little is known about the physiological functions of these proteins, they form interesting models for studies on regulation of glycosylation, biosynthesis of O-glycosylated glycoproteins, and function of cell surface receptors.  相似文献   

16.
Human transferrin receptor contains O-linked oligosaccharides   总被引:2,自引:0,他引:2  
We have investigated the oligosaccharides in the human transferrin receptor from three different cell lines. During our studies on the structures of the N-linked oligosaccharides of the receptor, we discovered that the receptor contains O-linked oligosaccharides. This report describes the isolation and characterization of these O-linked oligosaccharides. Three different human cell lines--K562, A431, and BeWo--were grown in media containing either [2-3H] mannose or [6-3H]glucosamine. The newly synthesized and radiolabeled transferrin receptors were purified by immunoprecipitation from cell extracts and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The receptor was proteolytically digested or treated directly with mild base/borohydride. The released radiolabeled glycopeptides and oligosaccharides were separated by a variety of chromatographic techniques, and their structures were analyzed. The transferrin receptor from all three cell types contains O-linked oligosaccharides that are released from peptide by mild base/borohydride treatment. The receptor from K562 cells contains at least one O-linked oligosaccharide having two sialic acid residues and a core structure of the disaccharide galactose-N-acetyl-galactosamine. In contrast, the O-linked oligosaccharides in the transferring receptors from both A431 and BeWo cell lines are not as highly sialylated and were identified as both the neutral disaccharide galactose-N-acetylgalactosamine and the neutral monosaccharide N-acetylgalactosamine. In addition, the receptors from all three cell lines contain both complex-type and high mannose-type N-linked oligosaccharides. The complex-type chains in the receptor from A431 cells have properties of blood group A antigens, whereas oligosaccharides in receptors from both BeWo and K562 cells lack these properties. These results are interesting since both A431 and BeWo cells, but not K562 cells, are positive for blood group A antigens. Thus, our results demonstrate that the human transferrin receptor contains O-linked oligosaccharides and that there are differences in the structures of both the O-linked and complex-type N-linked oligosaccharides on the receptors synthesized by different cell types.  相似文献   

17.
Leukosialin is one of the major glycoproteins of thymocytes and T lymphocytes and is notable for a very high content of O-linked carbohydrate structures. The full protein sequence for rat leukosialin as translated from cDNA clones is now reported. The molecule contains 371 amino acids with 224 residues outside the cell, one transmembrane sequence and 124 cytoplasmic residues. Data from the peptide sequence and carbohydrate composition suggest that one in three of the extracellular amino acids may be O-glycosylated with no N-linked glycosylation sites. The cDNA sequence contained a CpG rich region in the 3' coding sequence and a large 3' non-coding region which included tandem repeats of the sequence GGAT.  相似文献   

18.
We present the characterization of a new mouse cell surface protein, recognized by the 3138-specific monoclonal antibody. The expression of this antigen is predominantly restricted to the hematopoietic and lymphoid tissues: bone marrow, spleen, lymph node, and thymus. Immunoblot analyses show that the 3138 determinant is present on molecules with different apparent relative masses. The 3138 antigen migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band of M r 115 000 for normal nonstimulated spleen cells and thymocytes and as two bands of M r 115 000 and M r 125 000 for bone marrow cells and mitogen-stimulated spleen cells. The multiple sizes of the 3138 antigens (isoforms) found on various cell lines are not due to allelic polymorphism, but instead may reflect the specific cell type or reflect the cell's state of activation or maturation. Results from lectin chromatography and N-glycanase and neuraminidase studies suggest that the 3138 antigen is a heavily sialylated O-linked glycoprotein. The unusual features of this antigen indicate that it may be the mouse homologue of the rat W3/13 antigen and the human leukosialin/sialophorin antigens.Abbreviations used in this paper Con A concanavalin A - Gal galactose - Ga1Nac N-acetyl galactosamine - Ig immunoglobulin - IL-2 interleukin 2 - 2-ME 2-mercapto-ethanol - M r relative mass - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - Th T helper - TX-100 Triton X-100 - TTS 0.3% TX-100, 0.01 M Tris, pH 7.4, 0.15 M NaCl  相似文献   

19.
During lymphocyte homing to secondary lymphoid organs and instances of inflammatory trafficking, the rolling of leukocytes on vascular endothelium is mediated by transient interactions between L-selectin on leukocytes and several carbohydrate-modified ligands on the endothelium. Most L-selectin ligands such as CD34 and podocalyxin present sulfated carbohydrate structures (6-sulfated sialyl Lewis x or 6-sulfo-sLex) as a recognition determinant within their heavily glycosylated mucin domains. We recently identified endoglycan as a new member of the CD34 family. We report here that endoglycan, like the two other members of this family (CD34 and podocalyxin) can function as a L-selectin ligand. However, endoglycan employs a different binding mechanism, interacting with L-selectin through sulfation on two tyrosine residues and O-linked sLex structures that are presented within its highly acidic amino-terminal region. Our analysis establishes striking parallels with PSGL-1, a leukocyte ligand that interacts with all three selectins, mediating leukocyte-endothelial, leukocyte-leukocyte, and platelet-leukocyte interactions. Since the distribution of endoglycan includes hematopoietic precursors and leukocyte subpopulations, in addition to endothelial cells, our findings suggest several potential settings for endoglycan-mediated adhesion events.  相似文献   

20.
Notch is a large cell-surface receptor known to be an essential player in a wide variety of developmental cascades. Here we show that Notch1 endogenously expressed in Chinese hamster ovary cells is modified with O-linked fucose and O-linked glucose saccharides, two unusual forms of O-linked glycosylation found on epidermal growth factor-like (EGF) modules. Interestingly, both modifications occur as monosaccharide and oligosaccharide species. Through exoglycosidase digestions we determined that the O-linked fucose oligosaccharide is a tetrasaccharide with a structure identical to that found on human clotting factor IX: Sia-alpha2,3-Gal-beta1, 4-GlcNAc-beta1,3-Fuc-alpha1-O-Ser/Thr. The elongated form of O-linked glucose appears to be a trisaccharide. Notch1 is the first membrane-associated protein identified with either O-linked fucose or O-linked glucose modifications. It also represents the second protein discovered with an elongated form of O-linked fucose. The sites of glycosylation, which fall within the multiple EGF modules of Notch, are highly conserved across species and within Notch homologs. Since Notch is known to interact with its ligands through subsets of EGF modules, these results suggest that the O-linked carbohydrate modifications of these modules may influence receptor-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号