首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prostate cancer (PCa) is the most commonly diagnosed cancer in the developed world, and the incidence of this cancer is rising rapidly in many countries. Several polymorphic genes encoding enzymes involved carcinogenesis have been studied as potential risk factor of prostate cancer. Genetic polymorphisms in glutathione S-transferases M1 (GSTM1), T1 (GSTT1) and P1 (GSTP1) genes have been constantly reported to have a meaningful effect on prostate cancer risk. But other surveys of this relationship have yielded inconsistent results. To assess the possible contribution of the GSTM1, GSTT1, and GSTP1 gene polymorphisms in prostate cancer, we performed a population-based study of 139 prostate cancer patients and 115 healthy controls based on their genotype distributions of the genes. There were no differences in distributions of genotype frequencies of GSTM1 and GSTP1 polymorphisms between prostate cancer patients and controls (OR 1.60, 95 % CI 0.886–2.860 for GSTM1 and OR 1.38, 95 % CI 0.739–2.577 for GSTP1). In contrast, the distribution of GSTT1-null genotype is significantly different between the prostate cancer case and controls (OR 0.26, 95 % CI 0.128–0.518, p < 0.001). Meanwhile, GSTP1 I/V and V/V genotypes were significantly associated with prostate cancer where the PSA level was more than 10.0 (OR 2.73, 95 % CI 1.319–5.639, p = 0.006). Thus, our data imply that the GSTT1-null genotype may not be a risk factor but a protective factor of prostate cancer and GSTP1 Val allele is a risk factor for the prostate cancer where the PSA level was high, although functional studies with larger sample size are necessary to elucidate these findings.  相似文献   

2.
Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .  相似文献   

3.
Obesity, genetic polymorphisms of xenobiotic metabolic pathway, hypermethylation of tumor suppressor genes, and hypomethylation of proapoptotic genes are known to be independent risk factors for breast cancer. The objective of this study is to evaluate the combined effect of these environmental, genetic, and epigenetic risk factors on the susceptibility to breast cancer. PCR–RFLP and multiplex PCR were used for the genetic analysis of six variants of xenobiotic metabolic pathway. Methylation-specific PCR was used for the epigenetic analysis of four genetic loci. Multifactor dimensionality reduction analysis revealed a significant interaction between the body mass index (BMI) and catechol-O-methyl transferase H108L variant alone or in combination with cytochrome P450 (CYP) 1A1m1 variant. Women with “Luminal A” breast cancer phenotype had higher BMI compared to other phenotypes and healthy controls. There was no association between the BMI and tumor grade. The post-menopausal obese women exhibited lower glutathione levels. BMI showed a positive association with the methylation of extracellular superoxide dismutase (r = 0.21, p < 0.05), Ras-association (RalGDS/AF-6) domain family member 1 (RASSF1A) (r = 0.31, p < 0.001), and breast cancer type 1 susceptibility protein (r = 0.19, p < 0.05); and inverse association with methylation of BNIP3 (r = ?0.48, p < 0.0001). To conclude based on these results, obesity increases the breast cancer susceptibility by two possible mechanisms: (i) by interacting with xenobiotic genetic polymorphisms in inducing increased oxidative DNA damage and (ii) by altering the methylome of several tumor suppressor genes.  相似文献   

4.
Glutathione S-transferases (GSTs) belong to a group of multigene and multifunctional detoxification enzymes, which defend cells against a wide variety of toxic insults and oxidative stress. Oxidative stress leads to cellular dysfunction which contributes to the pathophysiology of diseases such as cancer, atherosclerosis, and diabetes mellitus. It is important to assess whether the glutathione S-Transferase (GSTT1, GSTM1 and GSTP1) genotypes are associated with type 2 diabetes mellitus as deletion polymorphisms have an impaired capability to counteract the oxidative stress which is a feature of diabetes. GSTT1, GSTM1 and GSTP1 gene polymorphisms were analysed in 321 patients and 309 healthy controls from an endogamous population from north India. An association analysis was carried out at two levels (a) individual genes and (b) their double and triple combinations. The proportion of GSTT1 and GSTM1 null genotypes was higher in diabetics compared to controls (GSTT1 30.8 vs. 21.0 %; GSTM1 49.5 vs. 27.2 %). The frequency of the null genotype at both loci was higher in diabetics (19.6 vs. 7.8 %) leading to an odds ratio of 2.90 (CI 1.76–4.78, P < 0.0001). At GSTP1locus, patients had a higher frequency of the V/V genotype (15.6 vs. 7.5 %) and significant susceptible odds ratio (2.56, CI 1.47–4.48, P < 0.001). A combination of null genotypes at GSTT1 and GSTM1 loci and V/V genotype of GSTP1 locus showed highest odds ratio (9.64, CI 1.53–60.63, P < 0.01). Overall this study highlights that GST genes may play an important role in the pathogenesis of type 2 diabetes. The risk is higher in individuals carrying more than one susceptible genotype at these loci. The potential role of GST polymorphisms as markers of susceptibility to type 2 diabetes needs further investigations in a larger number of patients and populations.  相似文献   

5.
Polymorphisms in the glutathione S-transferase superfamily genes that encodes enzymes involved in the phase II xenobiotic metabolism may lead head and neck cancer development. In this study we investigate the association of A313G and C341T GSTP1 polymorphisms, GSTM1 and GSTT1 null genotypes in the head and neck cancer development, interactions between these polymorphisms,the tumor histopathologic parameters and risk factors (smoking and drinking) were also evaluated in the case–control study. 775 individuals (261 patients/514 controls) were included in the study. Molecular analyzes were performed by PCR and PCR–RFLP; and statistical analyzes by Chi square and multiple logistic regression. Chi square test showed that only the genotype frequencies for GSTM1 and GSTT1 were in Hardy–Weinberg disequilibrium in both groups. Significant results with p ≤ 0.05 showed that age ≥ 48 years (OR = 11.87; 7.55–18.65), smoking (OR = 4.25; 2.70–6.69), drinking (OR = 1.59; 1.02–2.46) were possible predictors for the head and neck cancer development and the presence of A313G GSTP1 polymorphism (OR = 0.62; 0.42–0.92) decreased the risk for this disease. Individuals with the 313AG/GG GSTP1 and age ≥ 48 years (OR = 0.59; 0.38–0.91), male gender (OR = 0.54; 0.35–0.83), smokers (OR = 0.63; 0.40–0.99) and drinkers (OR = 0.57; 0.35–0.95); the GSTM1 null genotype and age < 48 years (OR = 2.46; 1.09–5.55); the GSTT1 null genotype and primary anatomical sites of pharynx (OR = 0.37; 0.17–0.79) and larynx (OR = 3.60; 1.93–6.72), can modulate the risk for the disease development. The variables age ≥ 48 years, smoking and drinking can be predictors for head and neck cancer development; moreover, A313G GSTP1 polymorphism, GSTM1 and GSTT1 null genotypes can modulate the risk for this disease.  相似文献   

6.
Oxidative stress is one of the main risk factors for asthma development. Glutathione S-transferases play an important role in antioxidant defences and may influence asthma susceptibility. In particular, GSTM1 and GSTT1 positive/null genotypes and the GSTP1*Ile105 Val polymorphism have been analyzed in a number of genetic association studies, with conflicting outcomes. Two previous meta-analyses have attempted to clarify the associations between GST genes and asthma, but these studies have also showed contrasting results. Our aim was to perform a meta-analysis that included independent genetic association studies on GSTM1, GSTP1, and GSTT1, evaluating also the effect of potential confounding variables (i.e. ethnicity, population age, and urbanization). Systematic review and meta-analysis of the effects of GST genes on asthma were conducted. The meta-analyses were performed using a fixed or, where appropriate, random effects model. The meta-analysis of the GSTM1 (n = 35), GSTT1 (n = 31) and GSTP1 (n = 28) studies suggests that no significant associations with asthma susceptibility were observed for GSTM1 and GSTP1 gene polymorphisms, whereas a significant outcome was detected for the GSTT1 positive/null genotype (pooled OR = 1.33, 95 %CI = 1.10–1.60). However, high between-study heterogeneity was identified in all the general analyses (p heterogenetity < 0.05). The stratification analysis seems to explain the heterogeneity only in few cases. This picture is probably due to the interactive process of genetics and environment that characterizes disease pathogenesis. Further studies on interactions of GST genes with the potential oxidative stress sources and with other antioxidant genes are needed to explain the role of GST enzymes in asthma.  相似文献   

7.
Glutathione S-transferase P1 (GSTP1) is one of the important mutant sites for the cancer risk at present. The conclusions of the published reports on the relationship between GSTP1 A/G gene polymorphism and the risk of breast cancer are still debated. This meta-analysis was performed to evaluate the association between GSTP1 and the risk of breast cancer. The association reports were identified from PubMed and Cochrane Library, and eligible studies were included and synthesized using meta-analysis method. 35 investigations were included into this meta-analysis for the association of GSTP1 A/G gene polymorphism and breast cancer susceptibility, consisting of 40,347 subjects (18,665 patients with breast cancer and 21,682 controls). The association between GSTP1 A/G gene polymorphism and breast cancer risk was not found for overall population, Caucasians and Africans. Interestingly, the GSTP1 A/G gene polymorphism was associated with the susceptibility of breast cancer in Asians (G allele: OR = 1.10, 95 % CI: 1.04–1.17, P = 0.001; GG genotype: OR = 1.36, 95 % CI: 1.14–1.62, P = 0.0008; AA genotype: OR = 0.92, 95 % CI: 0.85–0.98, P = 0.02). Furthermore, the GSTP1 A/G gene polymorphism was associated with the susceptibility of breast cancer for the analysis of the controls from hospital. In conclusion, GSTP1 A/G gene polymorphism is associated with the breast cancer susceptibility in Asians. However, more studies on the relationship between GSTP1 A/G gene polymorphism and the risk of breast cancer should be performed in further.  相似文献   

8.
9.
Cytochrome P450 1A1 (CYP1A1), an important phase I xenobiotic metabolizing enzyme, is responsible for metabolizing numerous carcinogens, particularly polycyclic aromatic hydrocarbons. The genetic polymorphism of CYP1A1 at the site of MspI (CYP1A1 MspI) has been implicated in prostate cancer risk, but the results of individual studies remain conflicting and inconclusive. The aim of this meta-analysis was to investigate the association of CYP1A1 MspI polymorphism with prostate cancer risk more precisely. We performed a comprehensive search of the PubMed, Embase, Web of Science, and China National Knowledge Infrastructure databases from their inception up to September 20, 2012 for relevant publications. The pooled odds ratios with the corresponding 95 % confidence intervals (95 % CIs) were calculated to assess the association of CYP1A1 MspI polymorphism with prostate cancer risk. In addition, stratified analyses by ethnicity and sensitivity analyses were conducted for further estimation. Sixteen eligible publications with 6,411 subjects were finally included into the meta-analysis after checking the retrieved papers. Overall, meta-analysis of total studies suggested that individuals carrying the TC genotype and a combined C genotype (CC + TC) were more susceptible to prostate cancer (ORTC vs. TT = 1.33, 95 % CI 1.10–1.61, P OR = 0.004; ORCC+TC vs. TT = 1.27, 95 % CI 1.05–1.55, P OR = 0.016). Stratified analysis of high quality studies also confirmed the significant association (ORTC vs. TT = 1.32, 95 % CI 1.04–1.67, P OR = 0.024; ORCC+TC vs. TT = 1.30, 95 % CI 1.02–1.66, P OR = 0.035). In subgroup analyses by ethnicity, a significant association between the CYP1A1 MspI polymorphism and risk of prostate cancer was found among Asians (ORTC vs. TT = 1.44, 95 % CI 1.20–1.72, P OR < 0.001; ORCC+TC vs. TT = 1.33, 95 % CI 1.12–1.58, P OR = 0.001), but not in Caucasians or mixed populations. The meta-analysis suggests an important role of the CYP1A1 MspI polymorphism in the risk of developing prostate cancer, especially in Asians.  相似文献   

10.
The aim of this study was to assess the oxidative stress status in rheumatoid arthritis (RA) by measuring markers of free radical production, systemic activity of disease, and levels of antioxidant. 52 RA patients and 30 healthy controls were included in the study, and clinical examination and investigations were performed and disease activity was assessed. Peripheral blood samples were used for all the assays. We assessed the markers of oxidative stress, including plasma levels of index of lipid peroxidation-thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), superoxide anion radical (O2 ?), nitric oxide (NO), and superoxide dismutase activity (SOD), catalase activity (CAT) and glutathione levels in erythrocytes. In the RA group, levels of H2O2, O2 ?, and TBARS were significantly higher than in controls (4.08 ± 0.31 vs. 2.39 ± 0.13 nmol/l, p < 0.01; 8.90 ± 1.28 vs. 3.04 ± 0.38 nmol/l, p < 0.01, 3.65 ± 0.55 vs. 1.06 ± 0.17 μmol/l, p < 0.01). RA patients had significantly increased SOD activity compared with healthy controls (2,918.24 ± 477.14 vs. 643.46 ± 200.63UgHbx103, p < 0.001). Patients had significantly higher levels of pro-oxidants (O2 ?, H2O2, and TBARS) compared to controls, despite significantly higher levels of SOD. Significant differences were also observed in serum levels of NO in patients with high-diseases activity. Our findings support an association between oxidative/nitrosative stress and RA. Stronger response in samples with higher diseases activity suggests that oxidative/nitrosative stress markers may be useful in evaluating the progression of RA as well as in elucidating the mechanisms of disease pathogenesis.  相似文献   

11.

Background

Glutathione S-transferase P1 (GSTP1) is thought to be involved in the detoxification of reactive carcinogen metabolites. Numerous epidemiological studies have evaluated the association of GSTP1 Ile105Val polymorphism with the risk of prostate cancer. However, the results remain inconclusive. To derive a more precise estimation, a meta-analysis was performed.

Methodology/Principal Findings

A comprehensive search was conducted to identify the eligible studies. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the relationship. The overall association was not significant (Val/Val vs. Ile/Ile OR = 1.06, 95% CI = 0.90–1.25, P = 0.50; Val/Val vs. Val/Ile+Ile/Ile: OR = 1.07, 95% CI = 0.91–1.25, P = 0.44). In subgroup analyses by ethnicity and prostate cancer grade, the similar results were observed. However, in stratified analysis by clinical stage, we found a significant association with low-stage prostate cancer (Val/Val vs. Ile/Ile: OR = 2.70, 95% CI = 1.73–4.22, P<0.001; Val/Val vs. Val/Ile+Ile/Ile: OR = 2.14, 95% CI = 1.38–3.33, P = 0.001). Moreover, there was no statistically significant evidence of multiplicative interactions neither between the GSTP1 Ile105Val polymorphism and GSTM1, nor between smoking status and GSTP1 on prostate cancer risk.

Conclusions

This meta-analysis showed that GSTP1 Ile105Val polymorphism might not be significantly associated with overall prostate cancer risk. Further stratified analyses showed a significant association with low-stage prostate cancer.  相似文献   

12.
The association between oxidative stress and coronary artery disease (CAD) is well documented. However, the role of epigenetic factors contributing to oxidative stress is relatively unexplored. In this study, we aimed to explore the impact of DNA methylation profile in BCL2/E1B adenovirus interacting protein 3 (BNIP3), extracellular superoxide dismutase (EC-SOD) and glutathione-S-transferase P1 (GSTP1) on the oxidative stress in CAD. Further, the contribution of folate pathway genetic polymorphisms in regulating epigenome was elucidated. The expression of BNIP3, EC-SOD, and GSTP1 were studied by using Maxima@SYBR-green based real-time qPCR approach in peripheral blood samples. Combined bisulfite restriction analysis and methylation-specific PCR were used to study promoter CpG island methylation. Further, the effect of homocysteine on BNIP3 gene expression was studied in human aortic endothelial cells in vitro. CAD cases exhibited upregulation of BNIP3, downregulation of EC-SOD and GSTP1. Hypomethylation of BNIP3 and hypermethylation of EC-SOD were observed in CAD cases. The expression of BNIP3 was positively correlated with homocysteine, MDA, protein carbonyls, and methylene tetrahydrofolate reductase C677T, while showing inverse association with cytosolic serine hydroxymethyl transferase C1420T. The expressions of EC-SOD and GSTP1 showed positive association with thymidylate synthase (TYMS) 2R3R, while inverse association with MDA, protein carbonyls, and methionine synthase reductase (MTRR) A66G. In vitro analysis showed homocysteine-dependent upregulation of BNIP3. The results of this study suggest that the aberrations in one-carbon metabolism appear to induce altered gene expression of EC-SOD, GSTP1, and BNIP3, and thus contribute to the increased oxidative stress and increased susceptibility to CAD.  相似文献   

13.
Glutathione S-transferases (GSTs) carry out a wide range of functions in cells, such as detoxification of endogenous compounds, removal of reactive oxygen species, and even catalysis of reactions in metabolic pathways beyond detoxification. Based on previous research, GSTM1 and GSTT1 might modify the risk of atherosclerosis. The aim of our study was to analyze the possible association of GSTM1 and GSTT1 gene polymorphisms with the occurrence of carotid plaque (CP); and biochemical parameters of oxidative stress, lipid profile and inflammation, in 346 consecutive patients with advanced atherosclerosis that underwent endarterectomy. A multiplex polymerase chain reaction (PCR) method was used to detect the deletions in GSTM1 and GSTT1 genes in the genomic DNA in 346 patients and 330 controls. The adjusted OR for CP presence (adjusted for age, gender, smoking, hypertension, BMI, HDLC, TG) was 0.24, 95 %CI 0.08–0.7, p < 0.01 for GSTT1 null and 1.13, 95 %CI 0.62–2.07, p = 0.7 for GSTM1 null genotype. We found significantly lower plasma lipoprotein (a) (Lp(a)) levels in GSTT1 null compared to wild-type genotype carriers in patient group (20.68 ± 26.02 mg/dl vs. 40.66 ± 42.89 mg/dl, mean ± SD, p = 0.04). The serum interleukin-6 (IL-6) values were significantly influenced by both GST polymorphisms in patients with CP. Our results, showing the significant reduction of GSTT1 deletions in patients with CP, suggest involvement of GSTs in carotid atherosclerosis. This study shows additional view of the possible role of GSTs in advanced chronic inflammatory disease of vascular system, but the confirmation in a larger studies in different populations are needed.  相似文献   

14.
15.
We carried out the current meta-analysis aiming to comprehensively assess the potential role of RASSF1A aberrant promoter methylation in the pathogenesis of hepatocellular carcinoma (HCC). A range of electronic databases were searched: Web of Science (1945–2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966–2013), EMBASE (1980–2013), CINAHL (1982–2013) and the Chinese Biomedical Database (CBM) (1982–2013) without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude risk difference (RD) with their 95 % confidence interval (95 % CI) was calculated. In the present meta-analysis, 21 clinical cohort studies with a total of 1,205 HCC patients were included. The results of our meta-analysis illustrated that the frequency of RASSF1A promoter methylation in cancer tissues were significantly higher than those of normal, adjacent and benign tissues (cancer tissues vs. normal tissues: RD = 0.63, 95 % CI 0.53–0.73, P < 0.001; cancer tissues vs. adjacent tissues: RD = 0.43, 95 % CI 0.33–0.53, P < 0.001; cancer tissues vs. benign tissues: RD = 0.48, 95 % CI 038–0.58, P < 0.001; respectively). Further subgroup by ethnicity demonstrated that RASSF1A aberrant promoter methylation was correlated with the pathogenesis of HCC among both Asians and Caucasians (all P < 0.05). The current meta-analysis suggests that RASSF1A aberrant promoter methylation may be implicated in the pathogenesis of HCC. Thus, detection of RASSF1A promoter methylation may be a helpful and valuable biomarker for diagnosis and prognosis of HCC.  相似文献   

16.
Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.  相似文献   

17.
The methylation status of p16, HIC1, N33, and GSTP1, which are involved in prostate carcinogenesis, was studied in prostate tissue samples containing neoplasms. Malignant acini, prostatic intraepithelial neoplasia (PIN) and benign prostatic hyperplasia (BPH) foci, and stroma surrounding glandular structures of each type were detected in histological sections, using laser capture microdissection of prostate tissue. High levels of methylation were found in tumor epithelium and adjacent tumor-associated stromal cells. Epigenetic changes in the stroma are indicative of a major role of tumor microenvironment in cancer development and progression. The methylation status of p16, HIC1, N33, and GSTP1 was also assessed in prostate biopsy material and operative tumor samples without laser capture microdissection. The methylation frequencies of all genes in tumor samples were considerably lower than those in microdissected tumor samples (HIC1, 71% vs. 89%; p16, 22% vs. 78%; GSTP1, 32% vs. 100%; and N33, 20% vs. 33%, respectively). It was concluded that laser capture micro-dissection is required in molecular analysis of tumors of this type.  相似文献   

18.
Non-high-density lipoprotein cholesterol(NHDL) is an independent and superior predictor of CVD risk as compared to low-density lipoprotein alone. It represents a spectrum of atherogenic lipid fractions with possibly a distinct genomic signature. We performed genome-wide association studies (GWAS) to identify loci influencing baseline NHDL and its postprandial lipemic (PPL) response. We carried out GWAS in 4,241 participants of European descent. Our discovery cohort included 928 subjects from the Genetics of Lipid-Lowering Drugs and Diet Network Study. Our replication cohorts included 3,313 subjects from the Heredity and Phenotype Intervention Heart Study and Family Heart Study. A linear mixed model using the kinship matrix was used for association tests. The best association signal was found in a tri-genic region at RHOQ-PIGF-CRIPT for baseline NHDL (lead SNP rs6544903, discovery p = 7e?7, MAF = 2 %; validation p = 6e?4 at 0.1 kb upstream neighboring SNP rs3768725, and 5e?4 at 0.7 kb downstream neighboring SNP rs6733143, MAF = 10 %). The lead and neighboring SNPs were not perfect surrogate proxies to each other (D′ = 1, r 2 = 0.003) but they seemed to be partially dependent (likelihood ration test p = 0.04). Other suggestive loci (discovery p < 1e?6) included LOC100419812 and LOC100288337 for baseline NHDL, and LOC100420502 and CDH13 for NHDL PPL response that were not replicated (p > 0.01). The current and first GWAS of NHDL yielded an interesting common variant in RHOQ-PIGF-CRIPT influencing baseline NHDL levels. Another common variant in CDH13 for NHDL response to dietary high-fat intake challenge was also suggested. Further validations for both loci from large independent studies, especially interventional studies, are warranted.  相似文献   

19.
The aim of our study was to evaluate the effect of two polymorphisms in the estrogen receptor alpha, PvuII and XbaI, on the development of prostate cancer within Slovak population, as well as their correlation with selected clinical characteristics. The study was performed using 311 prostate cancer patients and 256 healthy male controls. Both polymorphisms were significantly associated with higher risk of prostate cancer development. At the same time, the CC genotype of PvuII polymorphism (OR = 1.98; 95 % CI 0.94–4.21; p = 0.05) and the AG genotype of XbaI polymorphism (OR = 1.74; 95 % CI 1.0–3.02; p = 0.04) significantly contributed to the development of low-grade carcinoma, while the AG and GG genotypes of the XbaI polymorphism contributed mainly to the development of high-grade prostate cancer (OR = 1.83; 95 % CI 1.12–3.01; p = 0.01 and OR = 2.13; 95 % CI 1.06–4.19; p = 0.03, respectively). Similarly, the AG and GG genotypes of XbaI polymorphism showed significant association with prostate cancer in patients with serum PSA level ≥10 ng/ml. Both polymorphisms were found at the same time to be more frequent in patients diagnosed before the age of 60. We conclude on the basis of these results that PvuII and XbaI polymorphisms of estrogen receptor alpha might be associated with prostate cancer risk within Slovak population. Although this is a pilot study and, as such, more detailed investigations are needed to confirm the role of these polymorphisms in prostate cancer development and progression within said Slovak population, our results might still provide a valuable basis for further research with larger patient groups.  相似文献   

20.
Age-adjusted mortality rates for prostate cancer are higher for African-American men compared with those of European ancestry. Recent data suggest that West African men also have elevated risk for prostate cancer relative to European men. Genetic susceptibility to prostate cancer could account for part of this difference. We conducted a genome-wide association study (GWAS) of prostate cancer in West African men in the Ghana Prostate Study. Association testing was performed using multivariable logistic regression adjusted for age and genetic ancestry for 474 prostate cancer cases and 458 population-based controls on the Illumina HumanOmni-5 Quad BeadChip. The most promising association was at 10p14 within an intron of a long non-coding RNA (lncRNA RP11-543F8.2) 360 kb centromeric of GATA3 (p = 1.29E?7). In sub-analyses, SNPs at 5q31.3 were associated with high Gleason score (≥7) cancers, the strongest of which was a missense SNP in PCDHA1 (rs34575154, p = 3.66E?8), and SNPs at Xq28 (rs985081, p = 8.66E?9) and 6q21 (rs2185710, p = 5.95E?8) were associated with low Gleason score (<7) cancers. We sought to validate our findings in silico in the African Ancestry Prostate Cancer GWAS Consortium, but only one SNP, at 10p14, replicated at p < 0.05. Of the 90 prostate cancer loci reported from studies of men of European, Asian or African-American ancestry, we were able to test 81 in the Ghana Prostate Study, and 10 of these replicated at p < 0.05. Further genetic studies of prostate cancer in West African men are needed to confirm our promising susceptibility loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号