首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A morin–zinc(II) complex (MZ) was synthesized and its interaction with bovine serum albumin (BSA) were studied by molecular spectroscopy including fluorescence emission spectra, UV-visible spectra, circular dichroism (CD) spectra, three-dimensional fluorescence spectra, and synchronous fluorescence spectra. The interaction mechanism of BSA and MZ was discussed by fluorescence quenching method and Förster non-radiation energy transfer theory. The thermodynamic parameters ΔH θ, ΔG θ, ΔS θ at different temperatures were calculated and the results indicate the interaction is an exothermic as well as entropy-driven process. Hydrogen bond forces played the most important role in the reaction. The fluorescence probe experiment showed that the binding site of MZ is in subdomain IIA of BSA and the distance between BSA and MZ is 3.17 nm at normal body temperature. The conformation changes of BSA in presence of MZ were investigated by CD spectra and three-dimensional fluorescence spectra.  相似文献   

2.
The interactions of artemisinins including artemisinin, dihydroartemisinin, artemether and artesunate with human serum albumin (HSA) were studied by fluorescence spectroscopy, UV–Vis absorption spectroscopy, synchronous fluorescence, three-dimensional fluorescence, circular dichroism (CD) and molecular modeling. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that the artemisinins had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, the association constants K a and the corresponding thermodynamic parameters ΔH, ΔG and ΔS at various temperatures were also calculated. Based on the mechanism of Förster’s non-radiative energy transfer theory, the distance between the acceptors and HSA were found. In addition, alteration of the secondary structure of HSA in the presence of the artemisinins was tested by CD spectroscopy. Molecular modeling revealed that the artemisinins were bounded in the large hydrophobic cavity of the site I of HSA.  相似文献   

3.
The interaction of a water-soluble dinuclear nickel(II) complex, [Ni2(EGTB)(CH3CN)4](ClO4)4·4H2O (EGTB = ethylene glycol-bis(β-aminoethyl ether) N,N,N′,N′-tetrakis(2-benzimidazoyl)) (1), and bovine serum albumin (BSA) was investigated under physiological conditions using fluorescence, synchronous fluorescence, UV–vis absorption and circular dichroism (CD). The experimental results suggested that the nickel(II) complex could bind to BSA with binding constant (K) ~ 104 M?1 and quench the intrinsic fluorescence of BSA through a static quenching mechanism. The thermodynamic parameters, ΔG°, ΔH°, and ΔS°, calculated at different temperatures, indicated that the binding reaction was spontaneous and electrostatic interactions played a major role in this association. Based on the number of binding sites, it was considered that one molecule of complex 1 could bind to a single site or two sites of the BSA molecule or the two binding modes coexisted. In view of the results of site marker competition experiments, the reactive sites of BSA to complex 1 mainly located in subdomain IIA (site I) and subdomain IIIA (site II) of BSA. Moreover, the binding distance, r, between donor (BSA) and acceptor (complex 1) was 5.13 nm according to Förster nonradiation energy transfer theory. Finally, as shown by the UV–vis absorption, synchronous fluorescence and CD, complex 1 could induce conformation and microenvironmental changes of BSA. The results obtained herein will be of biological significance in toxicology investigation and anticancer metallodrug design.  相似文献   

4.
The interaction between jatrorrhizine (JAT) and bovine serum albumin (BSA) has been studied. The studies were carried out in a buffer medium at pH 7.4 using fluorescence spectroscopy, UV–vis spectroscopy, and molecular modeling methods. The results of fluorescence quenching and UV–vis absorption spectra experiments indicated the formation of the complex of BSA–JAT. Binding parameters were determined using the Stern–Volmer equation and Scatchard equation. The results of thermodynamic parameters ΔG, ΔH and ΔS at different temperatures indicate that the electrostatic interactions and hydrogen bonds play a major role for JAT–BSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that JAT is mainly located within the hydrophobic pocket of the subdomain IIIA of BSA. Furthermore, The distance between donor (BSA) and acceptor (JAT) was estimated according to fluorescence resonance energy transfer.  相似文献   

5.
The interactions between thioglycolic acid‐capped‐CuInS2/ZnS quantum dots (CuInS2/ZnS/TGA QDs) and tyrosine kinase inhibitor (TKI) were investigated using fluorescence, ultraviolet–visible spectrometry and Fourier transform infrared spectrometry. The results indicated that the fluorescence intensity of CuInS2/ZnS/TGA could be quenched by imatinib, dasatinib, nilotinib, gefitinib and erlotinib, which hinted that CuInS2/ZnS/TGA QDs could be used in the detection of TKI in active pharmaceutical ingredients (API). Calibration curves showed good linear correlation and low detection limits. The average recovery was between 98 and 102%. Moreover, the nature of the fluorescence quenching mechanism of CuInS2/ZnS/TGA QDs by TKI was discussed. A ground state complex was formed by hydrogen bonding between the carboxyl group of CuInS2/ZnS/TGA QDs and the amino group of TKI. This led to an increase in non‐radiative transition and fluorescence quenching of CuInS2/ZnS/TGA QDs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction of fipronil (FPN), a pesticide containing fluorine, to bovine serum albumin (BSA) was studied by spectroscopy including fluorescence spectra, UV–Visible absorption, scattering spectra, circular dichroism (CD) spectra, synchronous and three-dimensional fluorescence spectra. The number of binding sites n and observed binding constant Kb was measured by fluorescence quenching method. The thermodynamic parameters ΔH, ΔG, ΔS at different temperatures were calculated and the results indicate that hydrophobic forces played major role in the reaction. The distance r between donor (BSA) and acceptor (FPN) was obtained according to the Förster theory of non-radiation energy transfer. The structural change of BSA molecules with addition of FPN was analyzed and the results may be helpful to biologists, chemists and therapeutists.  相似文献   

7.
Herein, we report the effect of parecoxib on the structure and function of human serum albumin (HSA) by using fluorescence, circular dichroism (CD), Fourier transforms infrared (FTIR), three‐dimensional (3D) fluorescence spectroscopy, and molecular docking techniques. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG, and ΔS have been estimated by the fluorescence quenching method. The results indicated that parecoxib binds spontaneously with HSA through van der Waals forces and hydrogen bonds with binding constant of 3.45 × 104 M?1 at 298 K. It can be seen from far‐UV CD spectra that the α‐helical network of HSA is disrupted and its content decreases from 60.5% to 49.6% at drug:protein = 10:1. Protein tertiary structural alterations induced by parecoxib were also confirmed by FTIR and 3D fluorescence spectroscopy. The molecular docking study indicated that parecoxib is embedded into the hydrophobic pocket of HSA.  相似文献   

8.
Ag2Te quantum dots (QDs) have attracted great attention in biological applications due to their superior photoluminescence qualities and good biocompatibility, but their potential biotoxicity at a molecular biology level has been rarely discussed. In order to better understand the basic behavior of Ag2Te QDs in biological systems and compare their biotoxicity to cadmium‐containing QDs, a series of spectroscopic measurements was applied to reveal the molecular interactions of Ag2Te QDs and CdTe QDs with human serum albumin (HSA). Ag2Te QDs and CdTe QDs statically quenched the intrinsic fluorescence of HSA by electrostatic interactions, but Ag2Te QDs exhibited weaker quenching ability and weaker binding ability compared with CdTe QDs. Electrostatic interactions were the main binding forces and Sudlow's site I was the primary binding site during these binding interactions. Furthermore, micro‐environmental and conformational variations of HSA were induced by their binding interactions with two QDs. Ag2Te QDs caused less secondary structural and conformational change in HSA, illustrating the lower potential biotoxicity risk of Ag2Te QDs. Our results systematically indicated the molecular binding mechanism of Ag2Te QDs with HSA, which provided important information for possible toxicity risk of these cadmium‐free QDs to human health.  相似文献   

9.
Study on the binding properties of helicid by pepsin systematically using multi-spectroscopic techniques and molecular docking method, and these interactions comprise biological recognition at molecular level and backbone of biological significance in medicine concerned with the uses, effects, and modes of action of drugs. We investigated the mechanism of interaction between helicid and pepsin by using various spectroscopic techniques viz., fluorescence spectra, UV–Vis absorption spectra, circular dichroism (CD), 3D spectra, synchronous fluorescence spectra and molecular docking methods. The quenching mechanism associated with the helicid–pepsin interaction was determined by performing fluorescence measurements at different temperatures. From the experimental results show that helicid quenched the fluorescence intensity of pepsin via a combination of static and dynamic quenching process. The binding constants (Ka) at three temperatures (288, 298, and 308 K) were 7.940?×?107, 2.082?×?105 and 3.199?×?105 L mol?1, respectively, and the number of binding sites (n) were 1.44, 1.14, and 1.18, respectively. The n value is close to unity, which means that there is only one independent class of binding site on pepsin for helicid. Thermodynamic parameters at 298 K were calculated as follows: ΔHo (??83.85 kJ mol?1), ΔGo (??33.279 kJ mol?1), and ΔSo (??169.72 J K?1 mol?1). Based on thermodynamic analysis, the interaction of helicid with pepsin is driven by enthalpy, and Van der Waals’ forces and hydrogen bonds are the main forces between helicid and pepsin. A molecular docking study further confirmed the binding mode obtained by the experimental studies. The conformational changes in the structure of pepsin was confirmed by 3D fluorescence spectra and circular dichroism.  相似文献   

10.
《Process Biochemistry》2014,49(4):623-630
Herein, we report the effect of N,N-bis(dodecyloxycarbonylmethyl)-N,N,N,N-tetramethyl-1,2-ethanediammonium dibromide (dodecyl betainate gemini or DBG) on the structure and function of bovine serum albumin (BSA) by using fluorescence, time resolved fluorescence, circular dichroism and dynamic light scattering techniques. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters viz ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that DBG binds spontaneously with BSA through hydrophobic interaction. Time resolved fluorescence data show that the quenching follows the static mechanism pathway. It can be seen from far-UV CD spectra that the α-helical network of BSA is disrupted and its content increases from 71% to 79% at lower concentrations which again decreases to 38% at higher concentration. DLS measurements suggested that hydrodynamic radius (Rh) decreases in the presence of 30 and 40 μM of DBG while it increases when the concentration of DBG was 70 and 100 μM. The molecular docking study indicated that DBG is embedded into subdomain IIA of BSA and binds with the R-914, R-195 and R-217 residues by hydrogen bonding and by hydrophobic interaction.  相似文献   

11.
The binding of a cell nucleus stain, hematoxylin (HTL), to bovine serum albumin (BSA) was studied by spectroscopy including fluorescence spectra, UV–Visible absorption, circular dichroism (CD) spectra, synchronous and three-dimensional fluorescence spectra. The results indicated that the binding had led to static fluorescence quenching, with non-radiation energy transfer happening within single molecule. The observed binding constant was calculated to be 105.588 l mol?1 at 311 K and one binding site had formed. The thermodynamic parameters of the interaction complied with ΔG θ < 0, ΔH θ < 0, ΔS θ < 0 and the results indicate that hydrogen bonds played major role in the reaction. The distance r between donor (BSA) and acceptor (HTL) was obtained according to the Förster theory of non-radiation energy transfer. The structural change of BSA molecules with addition of HTL was analyzed and the optimized geometry of HTL–BSA was investigated by fluorescence probe method.  相似文献   

12.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The binding of one fluorine including triazole (C10H9FN4S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV–Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA–FTZ, and the binding constants (K a) at three different temperatures (298, 304, and 310 K) were 1.516?×?104, 1.627?×?104, and 1.711?×?104?mol L?1, respectively, according to the modified Stern–Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol?1 and 125.217 J?mol?1?K?1, respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA–FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.  相似文献   

14.
The interaction between K2Cr2O7 and urease was investigated using fluorescence, UV-vis absorption, and circular dichroism (CD) spectroscopy. The experimental results showed that the fluorescence quenching of urease by K2Cr2O7 was a result of the formation of K2Cr2O7–urease complex. The apparent binding constant K A between K2Cr2O7 and urease at 295, 302, and 309 K were obtained to be 2.14?×?104, 1.96?×?104, and 1.92?×?104 L mol?1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be ?5.90 kJ mol?1, 43.67 J mol?1 K?1 according to the Van’t Hoff equation. The electrostatic interaction played a major role in stabilizing the complex. The distance r between donor (urease) and acceptor (K2Cr2O7) was 5.08 nm. The effect of K2Cr2O7 on the conformation of urease was analyzed using UV-vis absorption, CD, synchronous fluorescence spectroscopy, and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.  相似文献   

15.
Fluorescence spectroscopy in combination with UV–vis absorption spectroscopy was employed to investigate the binding of an important traditional medicinal herb berberine to bovine serum albumin (BSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by berberine is a result of the formation of berberine–BSA complex. Fluorescence quenching constants were determined using the Stern–Volmer equation and Scatchard equation to provide a measure of the binding affinity between berberine and BSA. The results of thermodynamic parameters ΔG, ΔH, ΔS at different temperatures indicate that the electrostatic interactions play a major role for berberine–BSA association. Site marker competitive experiments indicated that the binding of berberine to BSA primarily took place in site II. Furthermore, the Effect of supramolecules to berberine–BSA system, and the distance r between donor (BSA) and acceptor (berberine) was obtained according to fluorescence resonance energy transfer (FRET).  相似文献   

16.
The interaction between Meropenem drug and human serum albumin (HSA) has been studied under physiological condition in Tris–HCl buffer solution at pH 7.4 by various spectroscopic (UV spectra, fluorescence spectra, CD spectra), Photo–induced HSA cleavage, and molecular docking techniques. The results of fluorescence titration revealed that the Meropenem strongly quench the intrinsic fluorescence of HSA through a static quenching procedure. Binding constants (Kb) and the number of binding sites (n ? 1) were calculated using modified Stern–Volmer equations. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated which revealed that the electrostatic and hydrogen bonding interactions play a major role in HSA–Meropenem association. The distance r between donor (HSA) and acceptor (Meropenem) was obtained according to fluorescence resonance energy transfer (FRET) and the alterations of HSA secondary structure induced by Meropenem were confirmed by FT–IR and CD measurements. The molecular docking technique was utilized to ascertain the mechanism and mode of action towards the molecular target HSA indicating that Meropenem was located within the subdomain IIA of protein by electrostatic interactions and hydrogen bonds, consistent with the corresponding experimental results. Additionally, Meropenem shows efficient photo–induced HSA cleavage. Our results may provide valuable information to understand the mechanistic pathway of drug delivery and to pharmacological behavior of drug.
  • Research Highlights
  • The interaction of Meropenem with HSA was studied by spectroscopic, photo-induced cleavage and molecular docking techniques.

  • The secondary structure of protein has been changed upon the interaction with Meropenem.

  • Subdomain IIA of the HSA is found to be the main binding site for Meropenem.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
Cystatins, known for their ubiquitous presence in mammalian system are thiol protease inhibitors serving important physiological functions. Here, we present a variant of cystatin isolated from brain of Capra hircus (goat) which is glycosylated but lacks disulphide bonds. Caprine brain cystatin (CBC) was isolated using alkaline treatment, ammonium sulphate fractionation (40–60%) and gel filtration chromatography on Sephacryl S-100HR column with an overall yield of 26.29% and 322-fold purification. The inhibitor gave a molecular mass of ~44 kDa as determined by SDS-PAGE and gel filtration behaviour. The Stokes radius and diffusion coefficient of CBC were 27.14 Å and 8.18 × 10?7 cm2 s?1, respectively. Kinetic data revealed that CBC inhibited thiol proteases reversibly and competitively, with the highest inhibition towards papain (Ki = 4.10 nM) followed by ficin and bromelain. CBC possessed 34.7% α-helical content as observed by CD spectroscopy. UV, fluorescence, CD and FTIR spectroscopy revealed significant conformational change upon CBC-papain complex formation. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic parameters – ΔH, ΔS, ΔG along with N (binding stoichiometry) for CBC-papain complex formation. Binding stoichiometry (N = .97 ± .07 sites) for the CBC-papain complex indicates that cystatin is surrounded by nearly one papain molecule. Negative ΔH (?5.78 kcal mol?1) and positive ΔS (11.01 cal mol?1 deg?1) values suggest that the interaction between CBC and papain is enthalpically as well as entropically favoured process. The overall negative ΔG (?9.19 kcal mol?1) value implies a spontaneous CBC-papain interaction.  相似文献   

18.
Under physiological conditions, the potential hematological toxicity of herbicide 2-methyl-4-chlorophenoxyacetic acid sodium (MCPA-Na) was discussed by fluorescence probe technology and spectroscopy methods including three-dimensional (3D) fluorescence, UV absorption and circular dichroism (CD) spectra. In vitro, MCPA-Na bound with bovine serum albumin (BSA) and formed new complex at ground state by electrostatic force and hydrogen bond. During the process, non-radiation energy transfer from BSA to MCPA-Na occurred and the distance r between donor and acceptor was obtained based on Förster theory. The binding site was investigated by fluorescence probe method and the results implied MCPA-Na was absorbed on domain II of BSA molecule. The enthalpy change (ΔH θ), Gibbs free energy change (ΔG θ) and entropy change (ΔS θ) were calculated at four different temperatures according to Van’t Hoff isobar equation and Gibbs–Helmholtz equation. Negative value of ΔG θ indicated the process of binding was a spontaneous and irreversible process, which gave a broad hint that MCPA-Na was likely to be poisonous. CD spectra exhibited significant changes of secondary structures in BSA molecule and three-dimensional fluorescence spectra indicated the tryptophan residue in BSA was placed in a less hydrophobic environment, which presented additional evidence to caution the danger of MCPA-Na residue in food. Meanwhile, the mechanism and geometry of the binding was analyzed at molecular level.  相似文献   

19.
The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd2+ concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360 nm and a broad emission spectra between 450 and 650 nm when excited at 370 nm, both characteristic of CdS QDs. Average sizes of 6 and 10 nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5–5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.  相似文献   

20.
Two forms of proteinase Ω were isolated from a commercial preparation of chymopapain (EC 3.4.22.6) by means of cation-exchange liquid chromatography. Their circular dichroism (CD) spectra in the 182–320 nm region indicated that the two forms possess closely related structures. For comparison, we also recorded the CD spectra of chromatographically purified samples of papain (EC 3.4.22.2) and the most abundant form of chymopapain. According to the qualitative criteria proposed by Manavalan and Johnson ((1983) Nature 305, 831–832), the spectral characteristics of papain correctly indicate that this protein belongs to the α + β class. Proteinase Ω is also placed in the α + β category, while chymopapain seems to be an α/β protein. Qualitative estimation of secondary structures yielded contents of helices and parallel ß-sheet that were higher in the case of chymopapain. Thus, the results of this work suggest that there are some differences in the folding pattern of chymopapain with respect to the other two proteinases. This proposal seems unexpected when the high amino acid sequence identity among these enzymes is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号