首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jiang  Yanfei  Nan  Hao  Shi  Na  Hao  Wenfang  Dong  Juane  Chen  Hongying 《Molecular biology reports》2021,48(3):2351-2364

Chlorogenic acid (CGA), a phenylpropanoid derived from Eucommia ulmoides Oliver, has been shown to exhibit potent cytotoxic and anti-proliferative activities against several human cancers. However, the effects of CGA on hepatocellular carcinoma (HCC) and the underlying mechanisms have not been intensively studied. In this study, the CGA treatment effects on the viability of human hepatoma cells were investigated by MTT assay. Our data showed that CGA could dose-dependently inhibit the activity of human hepatoma cells Hep-G2 and Huh-7, but did not affect the activity and growth of normal human hepatocyte QSG-7701. The genes and pathways influenced by CGA treatment were explored by RNA sequencing and bioinformatics analysis, which identified 323 differentially expressed genes (DEGs) involved in multiple pharmacological signaling pathways such as MAPK, NF-κB, apoptosis and TGF-β signaling pathways. Further analyses by real-time quantitative PCR, Western blot and flow cytometry revealed that CGA effectually suppressed the noncanonical NF-κB signaling pathway, meanwhile it activated the mitochondrial apoptosis of HCC by upregulation of the BH3-only protein Bcl-2 binding component 3 (BBC3). Our findings demonstrated the potential of CGA in suppressing human hepatoma cells and provided a new insight into the anti-cancer mechanism of CGA.

  相似文献   

3.
Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer.  相似文献   

4.
《Genomics》2023,115(4):110641
BackgroundGastric cancer (GC) is a common cancer with a high incidence and mortality rate. Herein, the role of hsa_circ_0002019 (circ_0002019) in GC was investigated.MethodsThe molecular structure and stability of circ_0002019 were identified by RNase R, and Actinomycin D treatment. Molecular associations were verified by RIP. Proliferation, migration, and invasion were detected by CCK-8, EdU, and Transwell, respectively. The effect of circ_0002019 on tumor growth was analyzed in vivo.ResultsCirc_0002019 was elevated in GC tissues and cells. Circ_0002019 knockdown inhibited the proliferation, migration, and invasion. Mechanically, circ_0002019 activated NF-κB signaling by increasing TNFAIP6 mRNA stability by PTBP1. Activation of NF-κB signaling limited the antitumor effect of circ_0002019 silencing in GC. Circ_0002019 knockdown inhibited tumor growth in vivo by reducing TNFAIP6 expression.ConclusionsCirc_0002019 accelerated the proliferation, migration, and invasion by regulating TNFAIP6/NF-κB pathway, suggesting circ_0002019 could be a key regulatory factor in GC progression.  相似文献   

5.
Chen F  Yang D  Wang S  Che X  Wang J  Li X  Zhang Z  Chen X  Song X 《IUBMB life》2012,64(3):274-283
Prostate cancer (PCa) has the second highest mortality rate of all tumor-related diseases for males in Western countries, and the incidence of PCa in China is increasing. Previous studies have proven that inhibitor of apoptosis proteins (IAPs) can regulate tumor cell invasion and metastasis. Livin is the most recently identified IAP. Our previous study showed that Livin might play an important role in the initiation of human PCa and that Livin-α might promote cell proliferation by regulating the G1-S cell cycle transition. However, whether Livin, as an IAP, can regulate the invasive ability of PCa cells remains unknown. In this study, we found that the expression of Livin was higher in metastatic PCa tissues than in nonmetastatic tissues and that the expression of Livin was downregulated/upregulated by small interfering RNA/vector, which could inhibit/promote PC-3/LNCaP cell invasion. This action was related to the impact of Livin on nuclear factor-κB (NF-κB) and its downstream signaling pathway, including FN and CXCR4. Together, our findings suggested that Livin might regulate tumor cell invasion in PCa directly, and that Livin might be an ideal candidate for preventing tumor cell invasion.  相似文献   

6.
Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer, and its incidence is on the rise. It has been reported that some matrix metalloproteinases (MMPs) are abnormally expressed in PTC and can be used as diagnostic markers. However, few studies have explored the underlying mechanisms by which MMPs promote tumor progression. In this study, we used microarray analysis to compare the variations of gene expression within the PTC cell populations and their adjacent normal tissues and found that MMP-11 was the most differentially expressed MMP. To investigate the role of MMP-11 in the mediation of thyroid cancer cell development, pEnter-MMP-11 plasmid, and MMP-11 small interfering RNA were applied to up- and downregulate MMP-11 expression of in cultured PTC cell lines K1 and BCPAP. The results suggested that the levels of proliferation and migration of cells transfected with MMP-11 siRNA were significantly reduced, while the levels in MMP-11-plasmid-transfected cells were increased. In terms of the mechanism, experimental data showed that the change in cyclin D1 is consistent with MMP-11 expression, which may explain the changes in proliferation. In addition, Western blot assay was conducted to analyze the p65 and activated (phospho-) p65 protein levels concomitant with MMP-11 adjustments. Variations in intracellular MMP-11 significantly altered the amount of phospho-p65 in thyroid cells, while p65 knockdown did not affect MMP-11 expression. These results suggest that MMP-11 is located upstream of p65 and regulates its activity. Interestingly, the data for the Transwell assay suggested that MMP-11 regulatory migration is also associated with the NF-κB p65 signaling pathway. In conclusion, this report describes the important role of MMP-11 in the regulation of thyroid cell proliferation and migration. Mechanistic studies have shown that cyclin D1 and p65 are important mediators in the processes, which provides a new way to study the mechanism of MMPs promoting the progression of thyroid cancer.  相似文献   

7.
8.
The microtubule cytoskeleton is known to play a role in cell structure and serve as a scaffold for a variety of active molecules in processes as diverse as motility and cell division. The literature on the role of microtubules in signal transduction, however, is marked by inconsistencies. We have investigated a well-studied signaling pathway, TNF-α-induced NF-κB activation, and found a connection between the stability of microtubules and the regulation of NF-κB signaling in C2C12 myotubes. When microtubules are stabilized by paclitaxel (taxol), there is a strong induction of NF-κB even in the absence of TNF-α . Although there was no additive effect of taxol and TNF-α on NF-κB activity suggesting a shared mechanism of activation, taxol strongly induced the NF-κB reporter in the presence of a TNF receptor (TNFR) blocking antibody while TNF-α did not. Both TNF-α and taxol induce the degradation of endogenous IκBα and either taxol or TNF-α induction of NF-κB activity was blocked by inhibitors of NF-κB acting at different sites in the signaling pathway. Both TNF-α and taxol strongly induce known NF-κB chemokine target genes. On the other hand, if microtubules are destabilized by colchicine, then the induction of NF-κB by TNF-α or taxol is greatly reduced. Taken together, we surmise that the activity of microtubules is at the level of the TNFR intracellular domain. This phenomenon may indicate a new level of signaling organization in cell biology, actively created by the state of the cytoskeleton, and has ramifications for therapies where microtubule regulating drugs are used.  相似文献   

9.
10.
BackgroundDiabetic retinopathy (DR) is a common problem in the diabetic patients due to the high blood glucose level. DR affects more number of diabetic patients worldwide with irreversible vision loss.ObjectiveThe current investigation was focused to reveal the therapeutic actions of nimbolide against the streptozotocin (STZ)-provoked DR in rats through inhibition of TLR4/NF-κB pathway.MethodologyDR was provoked to the rats through administering a single dose of STZ (60 mg/kg) intraperitoneally. The DR rats were then supplemented with the 50 mg/kg of nimbolide for 60 days. The bodyweight and blood glucose level was measured using standard methods. The lipid profiles (cholesterol, TG, LDL, and HDL), inflammatory markers, and antioxidants level was detected using respective kits. The level of MCP-1, VEGF, and MMP-9 was quantified using kits. The morphometric analysis of retinal tissues were done. The mRNA expressions of target genes were studied using RT-PCR assay.ResultsNimbolide treatment effective decreased the food intake and blood glucose, and improved the bodyweight of STZ-provoked animals. The levels of pro-inflammatory mediators, cholesterol, TG, LDL, and HDL, MCP-1, VEGF, and MMP-9 was remarkably suppressed by the nimbolide treatment. Nimbolide also improved the antioxidants, retinal thickness and cell numbers. The TLR4/NF-κB pathway was appreciably inhibited by the nimbolide.ConclusionOverall, our findings demonstrated that the nimbolide attenuated the STZ-provoked DR in rats through inhibiting the TLR4/NF-κB pathway.  相似文献   

11.
Liu  Xiaomei  Yi  Mingji  Jin  Rong  Feng  Xueying  Ma  Liang  Wang  Yanxia  Shan  Yanchun  Yang  Zhaochuan  Zhao  Baochun 《Molecular biology reports》2020,47(5):3735-3744
Molecular Biology Reports - In this study, a mice model of obesity-asthma was established. We investigated the correlation between oxidative stress and NF-κB signaling pathway in the lung...  相似文献   

12.
Esophageal carcinoma, with a increasing incidence, is one of the most aggressive carcinomas in gastrointestinal tract. Epidemiologic studies demonstrate an association of oral pathogens with multiple diseases, including rheumatoid arthritis, cardiovascular diseases, diabetes, and gastrointestinal malignancies. Nevertheless, a causal relationship between oral pathogens and esophageal squamous cell carcinoma (ESCC) has not been elucidated. Here, we found that Porphyromonas was significantly enriched in the saliva of patients with ESCC, compared with that in normal human. In vitro studies showed that Porphyromonas gingivalis (P. gingivalis) promoted the proliferation and motility of ESCC cells, as evidenced by up regulated expression of key molecules implicated in NF-κB signaling pathway. These findings, for the first time, demonstrated a role of oral pathogens in inducing ESCC tumorigenesis and metastasis, which might involve regulation of NF-κB signaling pathway.  相似文献   

13.
14.
Evidence indicates that inflammatory response is significant during the physiological process of human parturition; however, the specific signaling pathway that triggers inflammation is undefined. Toll-like receptors (TLRs) are key upstream gatekeepers that control inflammatory activation before preterm delivery. Our previous study showed that TLR4 expression was significantly increased in human pregnancy tissue during preterm and term labor. Therefore, we explore whether TLR4 plays a role in term labor by initiating inflammatory responses, therefore promoting uterine activation. The results showed that expression of TLR4, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), CC chemokine ligand 2 (CCL-2), and uterine contraction-associated proteins (CAPs) was upregulated in the human and mice term labor (TL) group compared with the not-in-labor (TNL) group, and the TLR4 level positively correlated with CAP expression. In pregnant TLR4-knockout (TLR4−/−) mice, gestation length was extended by 8 hr compared with the wild-type group, and the expression of IL-1β, IL-6, TNF-α, CCL-2, and CAPs was decreased in TLR4−/− mice. Furthermore, nuclear factor-κB (NF-κB) and P38MAPK activation is involved in the initiation of labor but was inhibited in TLR4−/− mice. In uterine smooth muscle cells, the expression of inflammatory cytokines and CAPs decreased when the NF-κB and P38MAPK pathway was inhibited. Our data suggest that TLR4 is a key factor in regulating the inflammatory response that drives uterine activation and delivery initiation via activating the NF-κB/P38MAPK pathway.  相似文献   

15.
16.
BackgroundCentipeda minima (L.) A.Br. (C. minima) has been used in traditional Chinese herbal medicine to treat nasal allergy, diarrhea, asthma and malaria for centuries. Recent pharmacological studies have demonstrated that the ethanol extract of C. minima (ECM) and several active components possess anti-bacterial, anti-arthritis and anti-inflammatory properties. However, the effects of ECM on neuroinflammation and the underlying mechanisms have never been reported.PurposeThe study aimed to examine the potential inhibitory effects of ECM on neuroinflammation and illustrate the underlying mechanisms.MethodsHigh performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to qualify the major components of ECM; BV2 and primary microglial cells were used to examine the anti-inflammatory activity of ECM in vitro. To evaluate the anti-inflammatory effects of ECM in vivo, the mice were orally administrated with ECM (100, 200 mg•kg−1•d−1) for 2 days before cotreatment with LPS (2 mg•kg−1•d−1, ip) for an additional 3 days. The mice were sacrificed the day after the last treatment and the hippocampus was dissected for further experiments. The expression of inflammatory proteins and the activation of microglia were respectively detected by real-time PCR, ELISA, Western blotting and immunofluorescence.ResultsHPLC-MS/MS analysis confirmed and quantified seven chemicals in ECM. In BV2 and primary microglial cells, ECM inhibited the LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), thus protecting HT22 neuronal cells from inflammatory damage. Furthermore, ECM inhibited the LPS-induced activation of NF-κB signaling pathway and subsequently attenuated the induction of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), NADPH oxidase 2 (NOX2) and NADPH oxidase 4 (NOX4), leading to the decreased production of nitrite oxide, prostaglandin E2 (PGE2) and reactive oxygen species (ROS). In an LPS-induced neuroinflammatory mouse model, ECM was found to exert anti-inflammatory activity by decreasing the production of proinflammatory mediators, inhibiting the phosphorylation of NF-κB, and reducing the expression of COX2, iNOS, NOX2 and NOX4 in the hippocampal tissue. Moreover, LPS-induced microglial activation was markedly attenuated in the hippocampus, while ECM at a high dose possesses a stronger anti-inflammatory activity than the positive drug dexamethansone (DEX).ConclusionThese findings demonstrate that ECM exerts antineuroinflammatory effects via attenuating the activation of NF-κB signaling pathway and inhibiting the production of proinflammatory mediators both in vitro and in vivo. C. minima might become a novel phytomedicine to treat neuroinflammatory diseases.  相似文献   

17.
18.
Papillary thyroid carcinoma (PTC) is the most prevalent cancer in the endocrine system, and the number of patients diagnosed with PTC has been increasing rapidly in recent years. Previous studies have reported that miR-145 plays an important role in many kinds of cancers, but its function in PTC remains unclear. In this study, we found that compared to paracancerous tissues, the level of miR-145 expression was significantly downregulated in PTC tissues. When miR-145 is overexpressed, migration and invasion of PTC cells were suppressed in vitro. In addition, we found that miR-145 downregulated the nuclear factor-κB (NF-κB) pathway in PTC cells. Taken together, our data suggest that miR-145 functions as a tumor suppressor in PTC with the suppressive effect related to downregulation of the NF-κB pathway.  相似文献   

19.
Objective: The objective of the present work was to investigate a possible mechanism of NF-κB signaling pathway and autophagy in the regulation of osteoblast differentiation, and provide experimental basis for the study of tooth eruption disorder.

Methods: Mouse osteoblast-like (MC3T3-E1) cells were inoculated with a cell density of 70%. According to the grouping experimental design, Western blot and monodansylcadaverine (MDC) detection were conducted after dosing for 24?h. The cells were divided into the following five groups: blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group; 25?µg/mL SN50 group and 50?µg/mL SN50 group.

Results: Western blot analysis revealed that the expression of LC3 protein was present in the blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group and 50?µg/mL SN50 group, with no significant differences among these groups. However, the expression of LC3 protein was significantly lower in the 25?µg/mL SN50 group. MDC detection showed that, in the blank control group; 6.25?µg/mL SN50 group; 12.5?µg/mL SN50 group and 50?µg/mL SN50 group, there was obvious green fluorescence in the cytoplasm of the osteoblasts. However, in the 25?µg/mL SN50 group, it was found that there were significantly fewer green fluorescent particles.

Conclusion: The osteoblast itself had a strong function of autophagy. The appropriate concentration of SN50 in blocking the NF-κB pathway of the osteoblast was associated with the obvious inhibition of autophagy. However, the relationship between NF-κB signaling pathway and autophagy in the process of tooth eruption requires further study.  相似文献   

20.
Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer’s disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ1-42 formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号