首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The patatin-like phospholipase domain containing 3 (PNPLA3, also called adiponutrin, ADPN) is a membrane-bound protein highly expressed in the liver. The genetic variant I148M (rs738409) was found to be associated with progression of chronic liver disease. We aimed to establish a protein purification protocol in a yeast system (Pichia pastoris) and to examine the human PNPLA3 enzymatic activity, substrate specificity and the I148M mutation effect. hPNPLA3 148I wild type and 148M mutant cDNA were cloned into P. pastoris expression vectors. Yeast cells were grown in 3 L fermentors. PNPLA3 protein was purified from membrane fractions by Ni-affinity chromatography. Enzymatic activity was assessed using radiolabeled substrates. Both 148I wild type and 148M mutant proteins are localized to the membrane. The wild type protein shows a predominant lipase activity with mild lysophosphatidic acid acyl transferase activity (LPAAT) and the I148M mutation results in a loss of function of both these activities. Our data show that PNPLA3 has a predominant lipase activity and I148M mutation results in a loss of function.  相似文献   

2.
Hepatic assembly of triacylglycerol (TAG)-rich very low density lipoproteins (VLDL) is achieved through recruitment of bulk TAG (presumably in the form of lipid droplets within the microsomal lumen) into VLDL precursor containing apolipoprotein (apo) B-100. We determined protein/lipid components of lumenal lipid droplets (LLD) in cells expressing recombinant human apoC-III (C3wt) or a mutant form (K58E, C3KE) initially identified in humans that displayed hypotriglyceridemia. Although expression of C3wt markedly stimulated secretion of TAG and apoB-100 as VLDL(1), the K58E mutation (located at the C-terminal lipid binding domain) abolished the effect in transfected McA-RH7777 cells and in apoc3-null mice. Metabolic labeling studies revealed that accumulation of TAG in LLD was decreased (by 50%) in cells expressing C3KE. A Fat Western lipid protein overlay assay showed drastically reduced lipid binding of the mutant protein. Substituting Lys(58) with Arg demonstrated that the positive charge at position 58 is crucial for apoC-III binding to lipid and for promoting TAG secretion. On the other hand, substituting both Lys(58) and Lys(60) with Glu resulted in almost entire elimination of lipid binding and loss of function in promoting TAG secretion. Thus, the lipid binding domain of apoC-III plays a key role in the formation of LLD for hepatic VLDL assembly and secretion.  相似文献   

3.
Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domains. Expression of full-length Cidea in undifferentiated 3T3-L1 cells or COS-1 cells increases total cellular triglyceride and strikingly alters the morphology of lipid droplets by enhancing their size and reducing their number. Remarkably, both lipid droplet binding and increased triglyceride accumulation are also elicited by expression of only the carboxy-terminal 104 amino acids, indicating this small domain directs lipid droplet targeting and triglyceride shielding. However, unlike the full-length protein, expression of the carboxy-terminus causes clustering of small lipid droplets but not the formation of large droplets, identifying a novel function of the N terminus. Furthermore, human Cidea promotes lipid storage via lipolysis inhibition, as the expression of human Cidea in fully differentiated 3T3-L1 adipocytes causes a significant decrease in basal glycerol release. Taken together, these data indicate that the carboxy-terminal domain of Cidea directs lipid droplet targeting, lipid droplet clustering, and triglyceride accumulation, whereas the amino terminal domain is required for Cidea-mediated development of enlarged lipid droplets.  相似文献   

4.
5.
LMP-1, the Epstein-Barr virus latent membrane protein 1, is the only protein encoded by the virus that has been shown to have the properties of a transforming oncogene in rodent fibroblasts such as Rat-1 cells. LMP-1 is phosphorylated and proteolytically cleaved in Rat-1 cells in a manner similar to that seen in human lymphocytes. In this study, we demonstrate that all three major domains of LMP-1 (N-terminal, transmembrane, and C-terminal domains) are required for the ability to transform Rat-1 cells in culture, as assayed by loss of contact inhibition. This study is the first demonstration of a functional role for the C-terminal domain of LMP-1. Our analysis suggests that there are at least three distinct regions of the C terminus involved in signalling. Amino acids 306 to 334, which generate a toxic signal in the absence of amino acids 334 to 364, and the last 23 amino acids, 364 to 386, are essential for transformation. Biochemical analysis of the LMP-1 mutants with the three domains deleted indicate that the mutant N-terminal with the domain deleted is phosphorylated normally but is inefficiently cleaved compared with the wild-type LMP-1. The mutant with the transmembrane domain deleted is also phosphorylated but is not cleaved, showing that phosphorylation of LMP-1 does not require membrane association. The nontransforming mutant with the C-terminal domain deleted that lacks the last 23 amino acids is phosphorylated and cleaved. Therefore, these processing events alone are insufficient to generate a transforming signal.  相似文献   

6.
7.
BubR1 is one of two putative vertebrate homologs of the yeast spindle checkpoint protein Bub1. We have used deletion and point mutants to elucidate the functions of BubR1 in mitosis. The nocodazole-activated spindle checkpoint of HeLa cells was disrupted by expression of a 39 amino acid fragment (residues 382-420) of BubR1 containing the Bub3-binding GLEBS motif. In contrast, we observed normal checkpoint function in a truncation mutant comprising residues 1-477, despite the lack of the C-terminal BubR1 kinase domain. In the absence of nocodazole, expression of the 477 amino acid fragment slowed progress through prometaphase of mitosis, causing accumulation of mitotic cells. This accumulation was also seen in a kinase dead mutant. The prolongation of mitosis required both kinetochore binding and an intact, functional spindle checkpoint. The prolongation of mitosis by kinase deficient BubR1 constructs indicates a crucial role for the BubR1 C-terminal kinase domain in chromosome movement, in addition to the role of the N-terminus in the checkpoint.  相似文献   

8.
Cloning of the human cDNA for the U1 RNA-associated 70K protein.   总被引:63,自引:8,他引:55       下载免费PDF全文
Anti-RNP sera were used to isolate a cDNA clone for the largest polypeptide of the U1 snRNP, a protein of mol. wt 70 kd designated 70K, from a human liver cDNA library constructed in the expression vector pEX1. The cro-beta-galactosidase-70K fusion protein reacted with various anti-RNP patient sera, a rabbit anti-70K antiserum, as well as with a monoclonal antibody specific for this protein. The sequences of four 70K peptides were determined and they match parts of the deduced amino acid sequence of the 1.3 kb insert of p70.1 indicating that it is a genuine 70K cDNA. Screening of a new cDNA library constructed from polysomal mRNA of HeLa cells with the p70.1 clone yielded an overlapping clone, FL70K, which was 2.7 kb long and covered the complete coding and 3'-untranslated sequence of the 70K protein in addition to 680 nucleotides upstream of the putative initiation codon, The predicted mol. wt of the encoded protein is approximately 70 kd. Amino acid analysis of the purified HeLa 70K protein yielded values close or identical to those deduced from the nucleotide sequence of the full-length cDNA. The 70K protein is rich in arginine (20%) and acidic amino acids (18%). Extremely hydrophilic regions containing mixed-charge amino acid clusters have been identified at the carboxyl-terminal half of the protein, which may function in RNA binding. A sequence comparison with two recently cloned RNA binding proteins revealed homology with one region in the U1 RNP 70K protein. This domain may also be responsible for RNA binding.  相似文献   

9.
Cover Picture     
S2A merged: A Lipase‐dead mutant of PNPLA2 (green) localizes with PLIN3 (red) on lipid droplets in HeLa cells.  相似文献   

10.
11.
The complete genomic organization of the two mucin genes MUC2 and MUC6 was obtained by comparison of new and published mRNA sequences with newly available human genomic sequence. The two genes are located 38.5 kb apart in a head-to-head orientation within a gene complex on chromosome 11p15.5. The N-terminal organization of MUC6 is highly similar to that of MUC2, containing the D1, D2, D', and D3 Von Willebrand factor domains followed by the large tandem repeat domains located in exons 31 and 30, respectively. MUC6 has a much smaller C-terminal domain (101 amino acids) encoded by 2 exons containing only the CK domain, compared with MUC2, which has a C-terminal domain of 859 amino acids containing the D4, C, D, and CK domains, encoded by 19 exons. The gene structures agreed partially but not completely with predictions from gene prediction programs.  相似文献   

12.
Bovine chondromodulin-I (ChM-I) purified from fetal cartilage stimulated the matrix synthesis of chondrocytes, and inhibited the growth of vascular endothelial cells in vitro. The human counterpart of this bovine growth regulating factor has not been identified. We report here the cloning of human ChM-I precursor cDNA and its functional expression in Chinese hamster ovary (CHO) cells. We first identified a genomic DNA fragment which encoded the N-terminus of the ChM-I precursor, and then isolated human ChM-I cDNA from chondrosarcoma tissue by PCR. The deduced amino acid sequence revealed that mature human ChM-I consists of 120 amino acids. In total, 16 amino acid residues were substituted in the human sequence, compared to the bovine counterpart. Almost of all the substitutions were found in the N-terminal hydrophilic domain. In the C-terminal hydrophobic domain (from Phe42 to Val120), the amino acid sequence was identical except for Tyr90, indicating a functional significance of the domain. Northern blotting and in situ hybridization indicated a specific expression of ChM-I mRNA in cartilage. We also successfully determined the cartilage-specific localization of ChM-I protein, using a specific antibody against recombinant human ChM-I. Multiple transfection of the precursor cDNA into CHO cells enabled us to isolate the mature form of human ChM-I from the culture supernatant. Purified recombinant human ChM-I stimulated proteoglycan synthesis in cultured chondrocytes. In contrast, it inhibited the tube morphogenesis of cultured vascular endothelial cells in vitro and angiogenesis in chick chorioallantoic membrane in vivo.  相似文献   

13.
Human immunodeficiency virus type 1 Vpu is a multifunctional phosphoprotein composed of the N-terminal transmembrane (VpuTM) and C-terminal cytoplasmic domains. Each of these domains regulates a distinct function of the protein; the transmembrane domain is critical in virus release, and phosphorylation of the cytoplasmic domain is necessary for CD4 proteolysis. We carried our experiments to identify amino acids in the VpuTM domain that are important in the process of virus-like particle (VLP) release from HeLa cells. VLPs are released from the plasma membrane of HeLa cells at constitutive levels, and Vpu expression enhanced the release of VLPs by a factor of 10 to 15. Deletion of two to five amino acids from both N- and C-terminal ends or the middle of the VpuTM domain generated mutant Vpu proteins that have lost the ability to enhance VLP release. These deletion mutants have not lost the ability to associate with the wild-type or mutant Vpu proteins and formed complexes with equal efficiency. They were also transported normally to the Golgi complex. Furthermore, a Vpu protein having the CD4 transmembrane and Vpu cytoplasmic domains was completely inactive, and Vpu proteins harboring hybrid Vpu-CD4 TM domains were also defective in the ability to enhance the release of VLPs. When tested for functional complementation in cotransfected cells, two inactive proteins were not able to reconstitute Vpu activity that enhances the release of Gag particles. Coexpression of functional CD4/Vpu hybrids or wild-type Vpu with inactive mutant CD4/Vpu proteins revealed that mutations in the VpuTM domain could dominantly interfere with Vpu activity in Gag release. Taken together, these results demonstrated that the structural integrity of the VpuTM domain is critical for Vpu activity in the release of VLPs from the plasma membrane of mammalian cells.  相似文献   

14.
15.
16.
Adipose triglyceride lipase (ATGL) catalyzes the first step in the hydrolysis of triacylglycerol (TG) generating diacylglycerol and free fatty acids. The enzyme requires the activator protein CGI-58 (or ABHD5) for full enzymatic activity. Defective ATGL function causes a recessively inherited disorder named neutral lipid storage disease that is characterized by systemic TG accumulation and myopathy. In this study, we investigated the functional defects associated with mutations in the ATGL gene that cause neutral lipid storage disease. We show that these mutations lead to the expression of either inactive enzymes localizing to lipid droplets (LDs) or enzymatically active lipases with defective LD binding. Additionally, our studies assign important regulatory functions to the C-terminal part of ATGL. Truncated mutant ATGL variants lacking approximately 220 amino acids of the C-terminal protein region do not localize to LDs. Interestingly, however, these mutants exhibit substantially increased TG hydrolase activity in vitro (up to 20-fold) compared with the wild-type enzyme, indicating that the C-terminal region suppresses enzyme activity. Protein-protein interaction studies revealed an increased binding of truncated ATGL to CGI-58, suggesting that the C-terminal part interferes with CGI-58 interaction and enzyme activation. Compared with the human enzyme, the C-terminal region of mouse ATGL is much less effective in suppressing enzyme activity, implicating species-dependent differences in enzyme regulation. Together, our results demonstrate that the C-terminal region of ATGL is essential for proper localization of the enzyme and suppresses enzyme activity.  相似文献   

17.
We have analyzed the sorting of the mammalian nucleoporin p62 in human culture cells and in the yeast Saccharomyces cerevisiae. To this end, gene fusions were generated that carry Aequorea victoria green fluorescence protein and defined portions of p62. Upon transient gene expression fluorescent fusion proteins were localized in HeLa cells. Likewise, fusion proteins were studied in S. cerevisiae using wild-type as well as mutant cells that cluster nuclear pore complexes. Our results demonstrate that evolutionarily distant organisms, such as humans and yeasts, recognize the same sequence elements of p62 for sorting to the nuclear envelope. Specifically, the entire sequence of p62 or its complete C-terminal domain targeted fusion proteins to the nuclear membranes. In contrast, truncations of the C-terminal domain or the N-terminal segment of p62 failed to associate with the nuclear envelope in either organism. In HeLa cells overexpression of several p62-containing fusion proteins resulted in nuclear fragmentation. The C-terminal domain of p62 caused this effect, and amino acid residues 477 to 525 were sufficient to induce aberrant nuclei. Thus, overexpression of 49 amino acid residues located at the C-terminal tail of p62 interferes with the nuclear integrity in human culture cells.  相似文献   

18.
The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl--dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.  相似文献   

19.
Caveolin-1 (Cav-1) is a major protein constituent of caveolae, a type of plasma membrane raft. We observed that coexpression of human Cav-1 with human immunodeficiency virus type 1 (HIV-1) blocked virion production from cells that are ordinarily highly permissive. Further investigation showed that this effect is specific, occurs at low ratios of Cav-1 to HIV-1 DNA, depends on expression of Cav-1 protein, and involves severely impaired expression of HIV-1 proteins. Cav-1 also blocked HIV-2 expression. In contrast, Cav-1 did not inhibit protein expression by a paramyxovirus and did not induce apoptosis or affect cellular morphology, cell viability, or cell cycle progression. Although only small amounts of HIV-1 virions were released from Cav-1-transfected cells, these were fully infectious. Deletion mutagenesis showed that the C-terminal 78 residues were as active as the full-length (178-amino-acid) protein in producing the block. In contrast, the 100 most N-terminal amino acids of Cav-1, which include the previously identified oligomerization and scaffolding domains, were shown to be dispensable. Study of single-amino-acid-exchange mutants of Cav-1 established that palmitoylation was not required. Additional deletion mutants then identified the hydrophobic, membrane-associated domain (residues 101 to 135) as the main determinant. Cellular distribution of wild-type and mutant proteins correlated with ability to block HIV-1 expression. Finally, Cav-2 also blocked HIV-1 expression. These data show that coexpression of caveolins can markedly inhibit expression of HIV proviral DNA and establish that the inhibition is mediated by the hydrophobic, membrane-associated domain.  相似文献   

20.
Antisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair proficient HeLa cells by means of an Epstein-Barr-virus derived cDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating an ERCC-1 protein with two extra amino acids in a conserved region of its C-terminal part resulted in a significant sensitization of the HeLa transfectants to mitomycin C-induced damage. These results suggest that overexpression of the mutated ERCC-1 protein interferes with proper functioning of the excision repair pathway in repair proficient cells and is compatible with a model in which the mutated ERCC-1 protein competes with the wild-type polypeptide for a specific step in the repair process or for occupation of a site in a repair complex. Apparently, this effect is more pronounced for mitomycin C induced crosslink repair than for UV-induced DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号