首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitraria tangutorum Bobr. is a typical halophyte with superior tolerance to salinity. However, little is known about its physiological adaptation mechanisms to the salt environment. In the present study, N. tangutorum seedlings were treated with different concentrations of NaCl (100, 200, 300 and 400 mmol L?1) combined with five levels of Ca2+ (0, 5, 10, 15 and 20 mmol L?1) to investigate the effects of salt stress and exogenous Ca2+ on Na+ compartmentalization and ion pump activities of tonoplast and plasma membrane (PM) in leaves. Na+ and Ca2+ treatments increased the fresh weight and dry weight of N. tangutorum seedlings. The absorption of Na+ in roots, stems and leaves was substantially increased with the increases of NaCl concentration, and Na+ was mainly accumulated in leaves. Exogenous Ca2+ reduced Na+ accumulation in roots but promoted Na+ accumulation in leaves. The absorption and transportation of Ca2+ in N. tangutorum seedlings were inhibited under NaCl treatments. Exogenous Ca2+ promoted Ca2+ accumulation in the plant. Na+ contents in apoplast and symplast of leaves were also significantly increased, and symplast was the main part of Na+ intracellular compartmentalization. The tonoplast H+-ATPase and H+-PPase activities were significantly promoted under salt stress (NaCl concentrations ≤300 mmol L?1). PM H+-ATPase activities gradually increased under salt stress (NaCl concentrations ≤200 mmol L?1) followed by decreases with NaCl concentration increasing. The tonoplast H+-ATPase, H+-PPase and PM H+-ATPase activities increased first with the increasing exogenous Ca2+ concentration, reached the maximums at 15 mmol L?1 Ca2+, and then decreased. The tonoplast and PM Ca2+-ATPase activities showed increasing trends with the increases of NaCl and Ca2+ concentration. These results suggested that certain concentrations of exogenous Ca2+ effectively enhanced ion pump activities of tonoplast and PM as well as promoted the intracellular Na+ compartmentalization to improve the salt tolerance of N. tangutorum.  相似文献   

3.
Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca2+ concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mRNA expression of components involved in Ca2+ regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca2+-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca2+-regulating proteins in a manner that does not follow typical fibre-type-specific transitions. In general, stimulation decreased mRNA content of all proteins studied. Most prominent down-regulation was observed for Cacna1 (26 and 32 % after SHO and PRO, respectively, in SOL; 19 % after SHO in EDL). SERCA1, SERCA2, CASQ1, CASQ2, and RyR1 mRNA content also decreased significantly in both muscles relative to resting control. Of notice is that hexokinase II mRNA content was increased in EDL and unchanged in SOL underlining the specificity of the down-regulation of mRNA of Ca2+ regulatory proteins. The results demonstrate contraction-induced down-regulation of mRNAs for the main components of Ca2+-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses.  相似文献   

4.
Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca2+ transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, N ε-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca2+ kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca2+ transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca2+ cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca2+ cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca2+ dysregulation.  相似文献   

5.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

6.
Supplemental calcium (Ca2+) is used in hydroponic studies on salinity to lessen the potential for Ca2+ deficiency. However, the Ca2+ concentration and the sodium (Na+): Ca2+ ratio used vary considerably. The implications of using a wide range of Na+: Ca2+ ratios for studies of salinity tolerance in wheat are not known. Also, despite the risk of development of Ca2+ deficiency under salinity stress, there are few reliable reports on the critical level of Ca2+ which can be used to diagnose Ca2+ deficiency in wheat. Two experiments were conducted to examine Ca2+ requirements of wheat under saline and non-saline conditions and to derive a critical level for Ca2+. Four bread wheat genotypes (Triticum aestivum L.) and a durum wheat genotype [Triticum turgidum subsp. durum) (Desf.) Husn.] with known differences in salinity tolerance were grown at 100 mM NaCl for four weeks with varying levels of external Ca2+ which resulted in Na+:Ca2+ ratios of 30, 20, 15, 5 and 2. The critical Ca2+ concentration was defined in a second experiment by growing the same wheat genotypes at seven levels of Ca2+ (0.05, 0.1, 0.2, 0.5, 1, 2 and 10 mM) under non-saline conditions. When grown at 100 mM NaCl salinity tolerance was greatest when the Na+:Ca2+ ratio ranged from 5 to 15. Growing plants at lower or higher Na+:Ca2+ ratios induced nutrient imbalances and additional osmotic stress which reduced the growth of plants. Transient Ca2+ deficiency occurred at high Na+:Ca2+ ratios and low Mg2+ occurred at the lowest Na+:Ca2+ ratio. Adding NaCl raised the tissue Na+ concentration and reduced the Ca2+ concentration and the most appropriate Na+:Ca2+ ratio in the solution was that which resulted in tissue Ca2+ concentrations similar to those of non-salinised plants. The critical level of Ca2+ in the youngest fully emerged leaf blades was 15–23 mmol kg-1 DW (600–900 mg kg-1 DW).  相似文献   

7.
P-type ATPases are a large family of enzymes that actively transport ions across biological membranes by interconverting between high (E1) and low (E2) ion-affinity states; these transmembrane transporters carry out critical processes in nearly all forms of life. In striated muscle, the archetype P-type ATPase, SERCA (sarco(endo)plasmic reticulum Ca2+-ATPase), pumps contractile-dependent Ca2+ ions into the lumen of sarcoplasmic reticulum, which initiates myocyte relaxation and refills the sarcoplasmic reticulum in preparation for the next contraction. In cardiac muscle, SERCA is regulated by phospholamban (PLB), a small inhibitory phosphoprotein that decreases the Ca2+ affinity of SERCA and attenuates contractile strength. cAMP-dependent phosphorylation of PLB reverses Ca2+-ATPase inhibition with powerful contractile effects. Here we present the long sought crystal structure of the PLB-SERCA complex at 2.8-Å resolution. The structure was solved in the absence of Ca2+ in a novel detergent system employing alkyl mannosides. The structure shows PLB bound to a previously undescribed conformation of SERCA in which the Ca2+ binding sites are collapsed and devoid of divalent cations (E2-PLB). This new structure represents one of the key unsolved conformational states of SERCA and provides a structural explanation for how dephosphorylated PLB decreases Ca2+ affinity and depresses cardiac contractility.  相似文献   

8.
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys27 of PLB was cross-linked to the Ca2+ pump at the cytoplasmic extension of M4 (at or near Lys328) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca2+ or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca2+ affinity conformation of the Ca2+-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca2+-ATPase activity and Ca2+ transport. The results suggest that the inhibitory effect of PLB on Ca2+-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca2+ to the Ca2+ pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca2+ pump are largely unchanged in failing myocardium.  相似文献   

9.
10.
《Biophysical journal》2023,122(2):386-396
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.  相似文献   

11.
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5′-terminal untranslated region (UTR) of 60 bp and a 3′-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys53, Cys128, Cys144, Cys152) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei.  相似文献   

12.
Many bacteria export intracellular calcium using active transporters homologous to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Here we present three crystal structures of Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3- mimicking a phosphoenzyme state reveal a closed state, which is intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. It suggests that LMCA1 in the E2P state is pre-organized for dephosphorylation upon Ca2+ release, consistent with the rapid dephosphorylation observed in single-molecule studies. An arginine side-chain occupies the position equivalent to calcium binding site I in SERCA, leaving a single Ca2+ binding site in LMCA1, corresponding to SERCA site II. Observing no putative transport pathways dedicated to protons, we infer a direct proton counter transport through the Ca2+ exchange pathways. The LMCA1 structures provide insight into the evolutionary divergence and conserved features of this important class of ion transporters.  相似文献   

13.
14.
Small ankyrin 1 (sAnk1) is a 17-kDa transmembrane (TM) protein that binds to the cytoskeletal protein, obscurin, and stabilizes the network sarcoplasmic reticulum in skeletal muscle. We report that sAnk1 shares homology in its TM amino acid sequence with sarcolipin, a small protein inhibitor of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Here we investigate whether sAnk1 and SERCA1 interact. Our results indicate that sAnk1 interacts specifically with SERCA1 in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, and in COS7 cells transfected to express these proteins. This interaction was demonstrated by co-immunoprecipitation and an anisotropy-based FRET method. Binding was reduced ∼2-fold by the replacement of all of the TM amino acids of sAnk1 with leucines by mutagenesis. This suggests that, like sarcolipin, sAnk1 interacts with SERCA1 at least in part via its TM domain. Binding of the cytoplasmic domain of sAnk1 to SERCA1 was also detected in vitro. ATPase activity assays show that co-expression of sAnk1 with SERCA1 leads to a reduction of the apparent Ca2+ affinity of SERCA1 but that the effect of sAnk1 is less than that of sarcolipin. The sAnk1 TM mutant has no effect on SERCA1 activity. Our results suggest that sAnk1 interacts with SERCA1 through its TM and cytoplasmic domains to regulate SERCA1 activity and modulate sequestration of Ca2+ in the sarcoplasmic reticulum lumen. The identification of sAnk1 as a novel regulator of SERCA1 has significant implications for muscle physiology and the development of therapeutic approaches to treat heart failure and muscular dystrophies linked to Ca2+ misregulation.  相似文献   

15.
The thermal sensitivity of metabolic performance in vertebrates requires a better understanding of the temperature sensitivity of cardiac function. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) is vital for excitation–contraction (E–C) coupling and intracellular Ca2+ homeostasis in heart cells. To better understand the thermal dependency of cardiac output in vertebrates, we present comparative analyses of the thermal kinetics properties of SERCA2 from ectothermic and endothermic vertebrates. We directly compare SR ventricular microsomal preparations using similar experimental conditions from sarcoplasmic reticulum isolated from cardiac tissues of mammals and fish. The experiments were designed to delineate the thermal sensitivity of SERCA2 and its role in thermal sensitivity Ca2+ uptake and E–C coupling. Ca2+ transport in the microsomal SR fractions from rabbit and bigeye tuna (Thunnus obesus) ventricles were temperature dependent. In contrast, ventricular SR preparations from coho salmon (Onchorhychus kisutch) were less temperature dependent and cold tolerant, displaying Ca2+ uptake as low as 5 °C. As a consequence, the Q10 values in coho salmon were low over a range of different temperature intervals. Maximal Ca2+ transport activity for each species occurred in a different temperature range, indicating species-specific thermal preferences for SERCA2 activity. The mammalian enzyme displayed maximal Ca2+ uptake activity at 35 °C, whereas the fish (tuna and salmon) had maximal activity at 30 °C. At 35 °C, the rate of Ca2+ uptake catalyzed by the bigeye tuna SERCA2 decreased, but not the rate of ATP hydrolysis. In contrast, the salmon SERCA2 enzyme lost its activity at 35 °C, and ATP hydrolysis was also impaired. We hypothesize that SERCA2 catalysis is optimized for species-specific temperatures experienced in natural habitats and that cardiac aerobic scope is limited when excitation–contraction coupling is impaired at low or high temperatures due to loss of SERCA2 enzymatic function.  相似文献   

16.
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.  相似文献   

17.
Optimal temperature and light are both necessary conditions for coral survival. Light enhances calcification, and thermal stress disrupts Ca2+ homeostasis. As calcium is involved in many important metabolic activities, in this study, we cloned the calmodulin-like protein (CaLP) gene of one of the scleractinian corals, Galaxea astreata. We also detected the relative mRNA expression levels of gaCaLP using the calcium channel blocker verapamil and CaCl2 treatment under conditions of light and dark, and compared expression levels under controlled temperature conditions. Full-length gaCaLP cDNA comprised 1290 nucleotides and contained 498 bp open reading frame that encoded a protein with 165 amino acids. With CaCl2, expression levels of gaCaLP only increased in the presence of light, suggesting that light may be a restrictive factor in CaLP expression when sufficient calcium is available in the environment. In addition, after verapami treatment, we noted that a down regulation of gaCaLP, suggesting that the expression of CaLP is closely related to extracellular Ca2+ influx. Under temperature stress at both high (30 °C) and low (20 °C) temperatures, expression levels of gaCaLP showed an initial increase, followed by a decreasing trend as treatment progressed. Expression levels reached their maximum value at 24 h. This result showed that CaLP participated in a temperature stress response, and Ca2+ homeostasis was disrupted during stress. The findings of the present study will help determine the function and regulatory mechanisms of gaCaLP.  相似文献   

18.
The ATP-dependent ion pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum to establish a reservoir for cell signaling. Because of its central importance in physiology, the activity of this transporter is tightly controlled via direct interactions with tissue-specific regulatory micropeptides that tune SERCA function to match changing physiological conditions. In the heart, the micropeptide phospholamban (PLB) inhibits SERCA, while dwarf open reading frame (DWORF) stimulates SERCA. These competing interactions determine cardiac performance by modulating the amplitude of Ca2+ signals that drive the contraction/relaxation cycle. We hypothesized that the functions of these peptides may relate to their reciprocal preferences for SERCA binding; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. In the present study, we demonstrated this opposing Ca2+ sensitivity is due to preferential binding of DWORF and PLB to different intermediate states that SERCA samples during the Ca2+ transport cycle. We show PLB binds best to the SERCA E1-ATP state, which prevails at low [Ca2+]. In contrast, DWORF binds most avidly to E1P and E2P states that are more populated when Ca2+ is elevated. Moreover, FRET microscopy revealed dynamic shifts in SERCA–micropeptide binding equilibria during cellular Ca2+ elevations. A computational model showed that DWORF exaggerates changes in PLB–SERCA binding during the cardiac cycle. These results suggest a mechanistic basis for inhibitory versus stimulatory micropeptide function, as well as a new role for DWORF as a modulator of dynamic oscillations of PLB–SERCA regulatory interactions.  相似文献   

19.
Amongst the cellular cacophony of altered signals in Alzheimer’s disease (AD), disrupted Ca2+ homeostasis and consequential endoplasmic reticulum (ER) stress signals have been recognized as key determinants of neuron fate. This altered Ca2+ state is accompanied by a failing sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, which has been recognized as a causal feature of the underlying disease state. Repair of the Ca2+ dyshomeostasis represents a putative drug target via alleviation of ER stress and rescue of injured neurons, effectively modifying the AD state. Herein, we report a small molecule SERCA activator that rescues brain cells and raises ER Ca2+ in vitro, and shows efficacy in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. These results support SERCA activation as a therapeutic target for AD.  相似文献   

20.
Carazolol (CZL) is a known agonist of β3 and antagonist of β1 and β2 adrenoceptors (AR), used in the animal production industry to improve meat quality by reducing animal stress and skeletal muscle (SM) proteolysis. Here we sought to better understand the direct effect CZL has on SM. We study CZL effect on calcium (Ca2+) regulation by enzymatic activity kinetics of the Ca2+-ATPase (SERCA), in isolated sarcoplasmic reticulum (SR) from SM and on the mechanical properties of isolated muscle. In isolated SR from SM previously incubated with 0.03 mM CZL, but absent during SR isolation and during SERCA activity determination, the activity was reduced by 45%. Thermal analysis of SERCA activity with CZL shifted the transition temperature of inactivation (Ti) from Ti = 47 to 44 °C. When isolated SR from fast and slow SM was exposed to CZL, inhibition of SERCA occurred in a dose dependent manner. Slow and fast SM Ti of SERCA shifted to a lower temperature in the presence of CZL and a second transition appears at temperatures <40 °C. In isolated extensor digitorum longus (EDL) and soleus muscles, CZL reduces the contraction force and increases susceptibility to fatigue. However, recovery force after fatigue in either muscle was higher. Our results suggest that Carazolol penetrates the plasma membrane and interacts with SERCA, thus having an important effect on skeletal muscle function. The inhibition of SERCA may lead to a decrement in SR Ca2+-release promoting further failure in muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号