共查询到20条相似文献,搜索用时 15 毫秒
1.
Beauchemin NJ Furnholm T Lavenus J Svistoonoff S Doumas P Bogusz D Laplaze L Tisa LS 《Applied and environmental microbiology》2012,78(2):575-580
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere. 相似文献
2.
The Frankia genome contains two truncated hemoglobin genes (hboN and hboO) whose functions remain to be determined. Nitric oxide (NO) generated by the addition of 400 microM SNAP (S-nitroso-N-acetylpenicillamine) caused a 10-fold increase in hboN gene expression but had no effect on hboO expression. The addition of the NO scavenger, carboxy-PT10, reduced the effect of SNAP. hboO gene expression increased under low-oxygen conditions, while hboN expression was unaffected. These results suggest that HboN may function in protection from nitrosative stress and that HboO may act as an oxygen transport molecule for increased respiration in hypoxic environments. 相似文献
3.
盐胁迫对Frankia 生长和生理生化特性的影响 总被引:2,自引:0,他引:2
研究了盐胁迫(10~50 g·L-1 NaCl)对从杨梅[Myrica rubra (Lour.) Sieb. et Zucc.]、木麻黄(Casuarina spp.)、桤木(Alnus spp.)和福建胡颓子(Elaeagnus oldhami Maxim.)根瘤中分离出的11株Frankia菌株的生长和生理生化特性的影响.结果表明,在离体培养条件下,分离自木麻黄和桤木根瘤的Frankia菌株耐盐性最强,其次是来源于福建胡颓子根瘤的Frankia菌株,而从杨梅根瘤中分离得到的Frankia菌株耐盐性最弱.在盐胁迫条件下, Frankia菌株的形态和生理生化特征也发生相应变化孢囊和泡囊数量增加、菌丝变细或变粗、固氮酶活性增加、营养源利用率下降. 相似文献
4.
5.
Comparative physiology of salt and water stress 总被引:73,自引:0,他引:73
Munns R 《Plant, cell & environment》2002,25(2):239-250
Plant responses to salt and water stress have much in common. Salinity reduces the ability of plants to take up water, and this quickly causes reductions in growth rate, along with a suite of metabolic changes identical to those caused by water stress. The initial reduction in shoot growth is probably due to hormonal signals generated by the roots. There may be salt-specific effects that later have an impact on growth; if excessive amounts of salt enter the plant, salt will eventually rise to toxic levels in the older transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant to a level that cannot sustain growth. These effects take time to develop. Salt-tolerant plants differ from salt-sensitive ones in having a low rate of Na+ and Cl-- transport to leaves, and the ability to compartmentalize these ions in vacuoles to prevent their build-up in cytoplasm or cell walls and thus avoid salt toxicity. In order to understand the processes that give rise to tolerance of salt, as distinct from tolerance of osmotic stress, and to identify genes that control the transport of salt across membranes, it is important to avoid treatments that induce cell plasmolysis, and to design experiments that distinguish between tolerance of salt and tolerance of water stress. 相似文献
6.
7.
We describe an NH4+-specific transport system in the N2-fixing symbiotic actinomycete Frankia sp. strain CpI1. [14C]methylammonium was used as an NH4+ analog. No specific transport process was detected when cells were grown on high concentrations of NH4+. A transport system with a high affinity for CH3NH3+ was synthesized after 3 to 4 h of nitrogen starvation. Methylammonium transport was not significantly inhibited by a variety of amino acids, primary amines, and polyamines. Ammonium completely eliminated CH3NH3+ transport. The Km for CH3NH3+ transport was around 2 +/- 1.8 microM with a Vmax of 4 to 5 nmol/min per mg of protein. The electron transport inhibitors cyanide and azide eliminated uptake, as did the uncoupler carbonyl cyanide-m-chlorophenylhydrazone. The sulfydryl reagent p-chloromercuribenzoic acid and the heavy metal thallium also inhibited uptake, suggesting the presence of an NH4+-specific permease. Concentration of CH3NH3+ across the membrane was demonstrated by conducting uptakes at low temperature to slow the metabolism of CH3NH3+ by glutamine synthetase. At 7 degrees C most of the label was concentrated inside the cells in a form that could be chased from the cells by adding excess NH4+ to the medium. At 30 degrees C most of the label was present as an impermeant metabolite. Thin-layer chromatography of cell extracts confirmed that the radioactivity inside the cells was mainly in the form of CH3NH3+ at 7 degrees C but was present as an unidentified metabolite at 30 degrees C. These studies demonstrate that Frankia sp. strain CpI1 has a high-affinity NH4+ transport system that is synthesized in response to NH4+ starvation. 相似文献
8.
Isolation and nitrogen-fixing activity of Frankia sp. strain CpI1 vesicles. 总被引:5,自引:6,他引:5
下载免费PDF全文

Under N2-fixing conditions in aerobic culture and in symbiosis, frankiae produce spherical, multicellular structures that have been called vesicles. The vesicles have been proposed as the site of nitrogen fixation. We isolated vesicles by using density centrifugation in a single-step sucrose gradient. Vesicles migrated out of 50% (wt/vol) sucrose and banded at the 40 to 50% sucrose interface; they were intact, as assessed by transmission electron microscopy, and were free of hyphal contamination. Specific activities of nitrogenase in vesicles prepared anaerobically were up to 100-fold greater than the specific activity of the largely hyphal pellet, depending on the recovery of vesicles. All of the activity in the pellet could be accounted for by the number of vesicles present in the pellet. Glutamine synthetase activity in crude extracts of vesicles was extremely low. 相似文献
9.
DNases were shown to be present in the extracellular fraction of Frankia strains R43 and CcI3. In spite of this, DNA was found in both the extracellular and cell wall fractions of these strains,
and it was shown that extracellular DNA was resistant to the DNases secreted into the culture medium of both Frankia strains. Furthermore, Southern blot analysis under high stringency conditions revealed the chromosomal origin of the cell
wall-adsorbed DNA (CW-DNA). Mobility gel band shift assays suggested that the extracellular DNA and the CW-DNA are engaged
in complexes with other molecules, most likely proteins, which are probably responsible for the enzymatic resistance observed
against extracellular DNase activities. In addition, it was shown that lysis of a small proportion of the cells in the exponential
growth phase may account for the DNA being released into the supernatant and adsorbed to the cell wall.
Received: 21 July 2000 / Accepted: 21 August 2000 相似文献
10.
Initiation and ontogeny of vesicles in cultured Frankia sp. strain HFPArI3. 总被引:5,自引:3,他引:5
下载免费PDF全文

Removal of combined nitrogen from the medium of Frankia sp. strain HFPArI3 induced the formation of specialized structures, called vesicles, which are the proposed site of nitrogen fixation. After 5 to 6 h of culture on N-free medium, newly formed vesicles, termed provesicles, arose from the tips of some hyphae. These structures were spherical, phase dark, ca. 1.5 to 2.0 micron in diameter, and were not associated with acetylene reduction (nitrogenase) activity. Provesicles reached their greatest frequency after ca. 24 h of N-free culture. Provesicles increased in size to become mature vesicles which first appeared after 18 to 20 h of N-free culture. They were ca. 2.5 micron in diameter, phase bright, and reached their greatest frequency after 5 to 6 days, at which time nitrogenase activity peaked. Some vesicles eventually became damaged structurally and took on the appearance of ghosts. Transmission electron micrographs revealed an increase in size from provesicle to mature vesicle. Also evident with the micrographs were the presence of a septum between the young provesicle and parental hypha, the presence of glycogen in some young vesicles, the development of internal septations as vesicles matured, and the degradation of cytoplasm and internal septae in ghost vesicles. The extent to which the formation of vesicles is reversible by the addition of NH4+ was investigated. Commitment times of 3.2 and 6.5 h were obtained for provesicles and vesicles, respectively. A concentration-dependent inhibition of nitrogenase by NH4+ was demonstrated. The structure of preexisting vesicles was also affected by addition of NH4+ to the culture medium. 相似文献
11.
Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells. 相似文献
12.
Isolation and nitrogenase activity of vesicles from Frankia sp. strain EAN1pec. 总被引:2,自引:3,他引:2
下载免费PDF全文

Vesicles, specialized cell structures thought to be the site of nitrogen fixation in the actinorhizal bacteria, were isolated from Frankia sp. strain EAN1pec by using French pressure disruption of mycelia followed by differential and isopycnic gradient centrifugation. The isolated vesicles reduced acetylene when incubated anaerobically with Mg2+ ions, ATP, and dithionite. No nitrogenase activity was detected in the disrupted mycelial fractions. Vesicles permeabilized by freeze-thaw or detergents showed increased rates of acetylene reduction due to increased permeability of dithionite. The effect on nitrogenase activity of different ATP concentrations was the same in normal and permeabilized vesicles. The endogenous respiratory rate of vesicles was significantly lower than that of mycelia, and the respiration rate of vesicles did not increase following the addition of succinate. The low respiratory activity of vesicles and their apparent dependence on externally supplied ATP for acetylene reduction suggest that the energy and reducing power for nitrogen fixation may be supplied from the mycelia to which they are attached. 相似文献
13.
14.
Enzymes of ammonia assimilation in hyphae and vesicles of Frankia sp. strain CpI1. 总被引:1,自引:2,他引:1
下载免费PDF全文

Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage. 相似文献
15.
Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain CpI1. 总被引:3,自引:0,他引:3
下载免费PDF全文

Frankia vesicles are differentiated during nitrogen starvation; they contain nitrogenase whether produced by free-living frankiae or by frankiae in actinorhizal root nodules. Vesicles are surrounded by envelopes of several monolayers of uncharacterized lipid. It has been suggested that the envelope limits diffusion of O2 into the vesicle cytoplasm, thereby preventing inactivation of nitrogenase. Whole vesicles were prepared on sucrose gradients and sonicated, and vesicle envelopes were isolated on top of a cushion of 40% sucrose. Transmission electron microscopy of potassium permanganate-fixed envelopes confirmed the purity of these preparations. Only the outer and inner envelope layers were visible in permanganate-fixed intact vesicles; the laminae were not visible in aldehyde-osmium-fixed, lead citrate-uranyl acetate-stained whole vesicles. However, the laminated nature of the envelope was clearly evident in sonicated vesicles and in envelope fragments fixed with KMnO4. The observations indicate that partial disruption of the vesicle envelope enables its visualization with permanganate fixation, and these observations open the way for further studies on the relationship of the vesicle surface to environmental conditions. 相似文献
16.
Mark R. Smith André de Haan Jan A. M. de Bont 《Applied microbiology and biotechnology》1993,38(5):642-648
The influence of calcium alginate entrapment on the physiology of Mycobacterium sp. E3 is reported. As a model system the NADH-requiring conversion of propene to 1,2-epoxypropane in the presence and absence of glucose as co-substrate was selected. The co-factor-dependent reaction was used as a measure of the physiological status of the resting cells. Initial kinetic experiments established a system free from diffusional limitations. In the presence of glucose there were no differences between the physiology of the free and immobilized cells. The apparent differences observed in the absence of co-substrate were demonstrated to be caused by calcium ions and to a lesser degree alginate; the addition of calcium, alginate or calcium alginate beads containing no cells to the free cells gave similar data to that obtained with immobilized cells. The results presented highlight the high concentrations of calcium to which cells immobilized in calcium alginate beads can be exposed.
Correspondence to: M. R. Smith 相似文献
17.
M. N. Jha G. S. Venkataraman B. D. Kaushik 《World journal of microbiology & biotechnology》1987,3(3):307-317
Summary The response of a salt-tolerantWestiellopsis prolifica ARM 366 and a sensitiveAnabaena C-10 to NaCl was studied. While the former could tolerate up to 400mm NaCl, the latter was highly sensitive to concentrations above 50mm NaCl. Under salt stress, the tolerantW. prolifica showed an increased nitrogen demand as exemplified by high nitrogenase activity, and growth inhibition at higher concentrations of NaCl did not appear to be a direct consequence of inhibition of nitrogen fixation. One of the striking responses to Na+ challenge by the tolerantW. prolifica was the excess production of extracellular polysaccharides which adsorbed the bulk of the Na+. The influx of Na+ into the cell was comparatively small.
Resumen Se estudió la respuesta al NaCl deWestiellopsis prolifica ARM 366, organismo tolerante a la sal, y deAnabaena C-10 que es sensible. El primero pudo tolerar concentraciones de hasta 400mm NaCl, sin embargo Anabaena C-10 se mostró extremadament sensible a concentraciones superiores a 50mm de NaCl. Bajo condiciones de estrés salinoW. prolifica mostró un incremento en la demanda de N2, como se deduce de la elevada actividad nitrogenásica; la inhibición del crecimiento a concentraciones superiores de NaCl no se pudo relacionar directamente con la inhibición de la fijación de nitrógeno. Una de las respuestas más sorprendentes deW. prolifica frente al Na+ fue la producción de un exceso de polisaccaridos extracelulares que absorbieron gran parte del Na+. El flujo de Na+ hacia la célula fue, pues, comparativemente pequeño.
Résumé On a étudié la réponse au NaCl d'une souche halo-tolérante deWestiellopsis prolifica (ARM 366) et, d'une souche halo-sensible d'Anabaena (C-10). Alors que la première tolère jusqu'a 400mm NaCl, la seconde est hautement sensible aux concentrations supérieures à 50mm. Soumise à un choc de salinité, la souche halo-tolérante deW. prolifica présente une demande d'azote accrue, comme le montre une activité nitrogénase élevée, et l'inhibition de la croissance par une forte concentration en NaCl ne parait pas être la conséquence directe d'une inhibition de la fixation d'azote. Une réponse remarquable deW. prolifica à l'agression par Na+ est la production en excès de polysaccharides exo-cellulaires, qui absorbent la plus grande partie du Na+. La pénétration de Na+ dans la cellule est relativement faible.相似文献
18.
Medhat Rehan Teal Furnholm Ryan H. Finethy Feixia Chu Gomaah El-Fadly Louis S. Tisa 《Applied microbiology and biotechnology》2014,98(18):8005-8015
Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller “leaf-like” structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics’ analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu2+ stress. After 5 days of Cu2+ stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu2+-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu2+-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins. 相似文献
19.
Respirometric studies with mitochondrial, fractions and whole cells revealed the presence of a more actively functioning respiratory system inAspergillus sydowii grown under salinity conditions. Oxidation of substrate, i.e., succinate, by the mitochondrial fraction was inhibited by the addition of rotenone, antimycin A, and cyanide. Electron microscopic observations ofAsp. sydowii grown in the presence of 2M NaCl indicated a comparatively larger size of mitochondria than in the control grown culture. A relatively larger fraction of the total cytoplasmic volume was occupied by the mitochondria in theAsp. sydowii grown in the media containing 2M NaCl. Levels of respiratory enzymes like succinate dehydrogenase. NADH dehydrogenase, cytochrome oxidase, NADH oxidase, and succinoxidase were higher in the culture grown in the presence of 2 M NaCl than in that grown in the absence of NaCl. 相似文献
20.
Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. 总被引:2,自引:1,他引:2
下载免费PDF全文

Halobacteroides acetoethylicus grew in media with 6 to 20% NaCl and displayed optimal growth at 10% NaCl. When grown in medium with an [NaCl] of 1.7 M, the internal cytoplasmic [Na+] and [Cl-] were 0.92 and 1.2 M, respectively, while K+ and Mg2+ concentrations in cells were 0.24 and 0.02 M, respectively. Intracellular [Na+] was fourfold higher than intracellular [K+]. Since Na+ and Cl- ions were not excluded from the cell, the influence of high salt concentrations on key enzyme activities was investigated in crude cell extracts. Activities greater than 60% of the maximal activity of the following key catabolic enzymes occurred at the following [NaCl] ranges: glyceraldehyde-3-phosphate dehydrogenase, 1 to 2 M; alcohol dehydrogenase (NAD linked), 2 to 4 M; pyruvate dehydrogenase, 0.5 to 1 M; and hydrogenase (methyl viologen linked), 0.5 to 3 M. These studies support the hypothesis that obligately halophilic, anaerobic eubacteria adapt to extreme salt concentrations differently than do halophilic, aerobic eubacteria, because they do not produce osmoregulants or exclude Cl-. This study also demonstrated that these halophilic, anaerobic eubacteria have a physiological similarity to archaebacterial halophiles, since Na+ and Cl- are present in high concentrations and are required for enzymatic activity. 相似文献