首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the relationship between bile secretion and nutrition in the pig requires a complete and continuous collection of the bile and its reinfusion to the animal. In most of the studies performed in different species, bile has been directly reinfused into the duodenum, leading to the exclusion of the sphincter of Oddi from the biliary pathway. It has been postulated that such an exclusion could inhibit gallbladder emptying. The aim of the present work was to study postprandial gallbladder emptying in the pig, depending on the site of bile reinfusion, i.e. the duodenum or the lower bile duct. The gallbladder bile was coloured with indocyanine green (ICG) and marker secretion was recorded after a test-meal. The results showed that after meal intake, the gallbladder emptied over a similar period of time and according to similar kinetics, whatever the site of bile reinfusion.  相似文献   

2.
Effects of cholecystokinin (CCK) on bile flow through the sphincter of Oddi (SO) were studied in anaesthetized dogs. Intravenous injection of CCK (0.25, 0.5, 1 and 2 IDU/Kg) elicited a dose-dependent reduction in flow through the SO in the first minutes after CCK administration. Pirenzepine and atropine decreased significantly (P less than 0.05) by 29% and a 40% respectively the inhibitory effect induced by 1 IDU/Kg of CCK, whereas hexamethonium elicited an increase in the inhibitory effect induced by 0.5 IDU/Kg of CCK (P less than 0.05). Intravenous infusion of cummulative doses of CCK had different effects according to the dose infused. Lower doses (0.025 and 0.05 IDU/Kg/min) increased transphincteric flow, however, high doses (0.1, 0.2 and 0.4 IDU/Kg/min) were inhibitory. These finding indicated that CCK had two effects on the SO : firstly, a contractile effect, probably mediated through a direct myogenic action and neuronal release of ACh, and secondly a relaxant effect, probably mediated by stimulation of inhibitory postganglionic neurons.  相似文献   

3.
Species differences have been observed in the effect of cholecystokinin octapeptide (CCK OP) on the canine and guinea pig gallbladder smooth muscle motility. 1. CCK OP was more potent stimulant in canine than in guinea pig gallbladder smooth muscles. Its pD2 values were 10 and 9.2, respectively. 2. The acetylcholine (10(-4) M)-induced maximum contractions in canine gallbladder muscle strips were by 50% lower as compared to the CCK OP (10(-8) M) maximum responses while in guinea pig gallbladder muscle strips the acetylcholine (ACh) maximum responses were by 20% lower than the CCK OP maximum responses. 3. CCK OP increased [3H]ACh release by 27% in canine gallbladder and by 40% in guinea pig gallbladder. 4. Somatostatin (SOM) had not any direct myogenic effect in guinea pig and canine gallbladder but it decreased [3H]ACh release from gallbladder intrinsic cholinergic neurons.  相似文献   

4.
N2, O2-di-butyryl guanosine 3′:5′ monophosphate (Bt2 cGMP), a known competitive and selective inhibitor of the effect of cholecystokinin on the pancreatic acinar cells invitro was tested for its effect on the guinea pig gallbladder invitro. Bt2 cGMP inhibited competitively the contractile effect of cholecystokinin octapeptide, and also inhibited the contraction induced by sulfated gastrin-17. Bt2 cGMP failed to inhibit the contraction induced by bombesin, acetylcholine or histamine. The 8-bromo derivative of cGMP and the dibutyryl derivative of cAMP did not affect contraction stimulated by cholecystokinin octapeptide. Since it is specific for gastrincholecystokinin peptides, and not restricted to the pancreas, Bt2 cGMP could be used to recognize the action of these peptides.  相似文献   

5.
Hydrophobic bile acids impair gallbladder emptying in vivo and inhibit gallbladder muscle contraction in response to CCK-8 in vitro. This study was aimed at determining the mechanisms of muscle cell dysfunction caused by bile acids in guinea pig gallbladders. Muscle cells were obtained by enzymatic digestion. Taurochenodeoxycholic acid (TCDC), a hydrophobic bile acid, caused a contraction of up to 15% and blocked CCK-induced contraction. Indomethacin abolished the TCDC-induced contraction. Hydrophilic bile acid tauroursodeoxycholic acid (TUDC) had no effect on muscle contraction but prevented the TCDC-induced contraction and its inhibition on CCK-induced contraction. Pretreatment with NADPH oxidase inhibitor PH2I, xanthine oxidase inhibitor allopurinol, and free-radical scavenger catalase also prevented TCDC-induced contraction and its inhibition of the CCK-induced contraction. TCDC caused H2O2 production, lipid peroxidation, and increased PGE2 synthesis and activities of catalase and SOD. These changes were significantly inhibited by pretreatment of PH2I or allopurinol. Inhibitors of cytosolic phospholipase A2 (cPLA2), protein kinase C (PKC), and mitogen-activating protein kinase (MAPK) also blocked the TCDC-induced contraction. It is concluded that hydrophobic bile acids cause muscle cell dysfunction by stimulating the formation of H2O2 via activation of NADPH and xanthine oxidase. H2O2 causes lipid peroxidation and activates cPLA2 to increase PGE2 production, which, in turn, stimulates the synthesis of free-radical scavengers through the PKC-MAPK pathway.  相似文献   

6.
The changes in isometric tension and in concentrations of cyclic AMP and cyclic GMP in guinea pig gallbladder muscle induced by the C-terminal octapeptide of cholecystokinin (C8-CCK) were studied before and after the addition of indomethacin 3 × 10?6 g/ml. The contractile response to the hormone was not affected by indomethacin, nor was the associated decrease in cyclic AMP concentration. However, indomethacin completely prevented the increase in cyclic GMP following addition of C8-CCK. The results suggest that in isolated guinea pig gallbladder, cyclic GMP is not essential for the C8-CCK-induced decrease in cyclic AMP concentration, and that the contractile response induced by the hormone is independent of this nucleotide.  相似文献   

7.
Although it is known that the vasculatures of the brain and the forearm are sensitive to changes in arterial Pco(2), previous investigations have not made direct comparisons of the sensitivities of cerebral blood flow (CBF) (middle cerebral artery blood velocity associated with maximum frequency of Doppler shift; Vp) and brachial blood flow (BBF) to hypercapnia. We compared the sensitivities of Vp and BBF to hypercapnia in humans. On the basis of the critical importance of the brain for the survival of the organism, we hypothesized that Vp would be more sensitive than BBF to hypercapnia. Nine healthy males (30.1 +/- 5.2 yr, mean +/- SD) participated. Euoxic hypercapnia (end-tidal Po(2) = 88 Torr, end-tidal Pco(2) = 9 Torr above resting) was achieved by using the technique of dynamic end-tidal forcing. Vp was measured by transcranial Doppler ultrasound as an index of CBF, whereas BBF was measured in the brachial artery by echo Doppler. Vp and BBF were measured during two 60-min trials of hypercapnia, each trial separated by 60 min. Since no differences in the responses were found between trials, data from both trials were averaged to make comparisons between Vp and BBF. During hypercapnia, Vp and BBF increased by 34 +/- 8 and 14 +/- 8%, respectively. Vp remained elevated throughout the hypercapnic period, but BBF returned to baseline levels by 60 min. The Vp CO(2) sensitivity was greater than BBF (4 +/- 1 vs. 2 +/- 1%/Torr; P < 0.05). Our findings confirm that Vp has a greater sensitivity than BBF in response to hypercapnia and show an adaptive response of BBF that is not evident in Vp.  相似文献   

8.
Calcitonin gene-related peptide (CGRP) relaxes vascular and intestinal smooth muscle. This study localized CGRP in the guinea pig gallbladder, examined the effects of CGRP on KCl- and ACh-induced contraction, and determined CGRPs site of action in the gallbladder. The gallbladder of male Hartley guinea pigs was used in in vitro tension studies, radioimmunoassay, or immunocytochemical studies. Radioimmunoassay showed that 8.0 +/- 0.5 pmol/g of immunoreactive CGRP was present. Immunocytochemistry demonstrated that immunoreactive-CGRP nerve fibers occurred around blood vessels, in gallbladder smooth muscle layers, and were associated with ganglia. No immunoreactive cell bodies were observed, even after colchicine treatment. The in vitro tension studies showed that CGRP inhibits either KCl- or acetylcholine-stimulated contraction. CGRP may in part act directly on the gallbladder smooth muscle to inhibit contraction.  相似文献   

9.
The degradation of 125I-CCK8 in guinea pig fundic gastric glands was time and temperature dependent. At both 24 and 37 degrees C, dithiothreitol (DTT) and chloroquine reduced the degradation of the internalized 125I-CCK8. After 60 min of binding, DTT, chloroquine and DTT plus chloroquine together significantly reduced radioligand degradation by 43, 55 and 66%, respectively, compared to control at 24 degrees C, and these differences remained significant after 1, 2 and 3 hr of processing. Similar effects were noted at 37 degrees C. About 75% of the radioactivity appearing in the supernatant after 60 min of exocytosis at 37 degrees C represented degraded material as measured by both Sep-Pak chromatography and rebinding methods. DTT and chloroquine both significantly reduced the amounts of degraded radioligand exocytosed from these glands.  相似文献   

10.
We have investigated the mechanism by which morphine contracts hog bile duct and sphincter of Oddi. Morphine contraction is antagonized by naloxone, competitively on the sphincter, noncompetitively on the bile duct. Diphenhydramine at low concentration (3.4 X 10(-6)M) also antagonizes both actions of morphine. Histamine has a very potent contracting action on the sphincter and bile duct and this is antagonized by diphenhydramine. Burimamide only weakly antagonizes the actions of morphine or histamine. Compound 48/80 causes a pronounced contraction of sphincter and bile duct following which morphine effects are greatly attenuated. These results suggest that morphine-induced contraction of the sphincter of Oddi and bile duct is mediated by a two step reaction involving interaction with a specific opiate receptor leading to the release of histamine which combines with an H1 receptor to produce the effect.  相似文献   

11.
Bile acid structure and bile formation in the guinea pig   总被引:2,自引:0,他引:2  
The effects of intravenous infusions (1-4 mumol/min/kg) of 14 bile acids, cholic, deoxycholic, ursodeoxycholic, chenodeoxycholic, dehydrocholic, and their glycine and taurine conjugates, on bile flow and composition and on the biliary permeation of inert carbohydrates have been studied in the guinea pig bile fistula. Hydroxy bile acids were eliminated in bile without major transformation, except for conjugation (over 90%) when unconjugated bile acids were infused. During infusion of dehydrocholate and taurodehydrocholate, 77-100% of the administered dose was recovered in bile as 3-hydroxy bile acids, thus indicating that reduction of the keto group in position 3 was virtually complete. All bile acids produced choleresis at the doses employed: the strongest choleretic was deoxycholate (81.78 microliters/mumol), the weakest was taurodehydrocholate (10.2 microliters/mumol). Choleretic activity was directly and linearly related to bile acid hydrophobicity, as inferred by HPLC, both for similarly conjugated bile acids, and for bile acids having the same number, position, or configuration of the hydroxyl groups. In all instances, the rank ordering was: deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate. During choleresis produced by any of the bile acids tested, bicarbonate concentration in bile slightly declined, but the calculated concentration in bile-acid-stimulated bile (45-57 mmol/l) was always higher than that measured in plasma (23-26 mmol/l). Biliary concentrations of cholesterol (20-68 mumol/l) and phospholipid (14-63 mumol/l) were very low during spontaneous secretion, and declined even further following bile acid choleresis. None of the infused bile acids consistently modified biliary excretion of cholesterol and phospholipid. Consistent with a previous observation from this laboratory, all hydroxy bile acids reversibly diminished [14C]erythritol and [14C]mannitol biliary entry during choleresis, while they increased or failed to modify that of [3H]sucrose and [3H]inulin. The rank ordering for the inhibitory effect on [14C]erythritol and [14C]mannitol permeation was: 3 alpha,7 alpha,12 alpha-trihydroxy greater than 3 alpha,7 alpha-dihydroxy greater than 3 alpha,7 beta-dihydroxy greater than 3 alpha,12 alpha-dihydroxy bile acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
This study is the first to demonstrate the presence of cholesteryl ester synthetase activity in the gallbladder epithelium. Using epithelium of the guinea pig gallbladder, the study demonstrated that the enzyme was localized mainly in the particulate fraction. The enzyme required CoA and ATP for activity and displayed a pH optimum of 7.0. The uptake of biliary cholesterol by gallbladder (shown by other investigators) and the presence of cholesteryl ester synthetase activity (demonstrated in this study) suggest that the gallbladder epithelium has an active role which might be important in conditions of cholesterol supersaturation in bile.  相似文献   

13.
W Q Cai  G Gabella 《Acta anatomica》1984,119(1):10-17
A population of catecholamine-containing cells, broadly belonging to the class of small intensely fluorescent (SIF) cells, was observed in the ganglionated plexus and around blood vessels of the guinea pig gallbladder. Their morphological features were studied by fluorescence and electron microscopy. Some cells were closely associated with ganglion neurons within the ganglionated plexus. Others were clustered into small groups located along blood vessels. Counts carried out on the whole gallbladder showed that these cells varied greatly in number between individuals and that they were most numerous shortly after birth (on average 230 cells). In the adult, their average number was about 30.  相似文献   

14.
Fourteen castrated male Large White pigs, weighing 42.5 +/- 1.0 kg, were fitted with biliary and duodenal fistulae for biliary secretion studies. Furthermore, catheters were placed in a carotid artery for blood sampling and in a jugular vein for peptide infusion. Bile was automatically restituted to the animals and continuously sampled for analysis on experimental days. Following an 8 day recovery period, infusion studies were performed after an overnight fast. After a 30 min basal period, sustained biliary flow and bile acid output were obtained and maintained throughout the assay with secretin (36 pmol/kg/h) and CCK-8 (600 pmol/kg/h) infusion. Then, 200, 400, 600, 800 or 1200 pmol/kg/h of porcine pancreatic polypeptide (PP) were infused for 60 min. Secretin plus CCK infusion was continued for 1 h after PP infusion was stopped. Each dose of PP was given on a separate day. Biliary flow was not affected by PP except for the dose of 400 pmol/kg/h. On the contrary, bile acid concentration and output decreased with the lowest dose of PP (200 pmol/kg/h). As soon as the first dose of PP was infused, bile acid concentration and output fell to about 60% of values obtained with secretin plus CCK. Plasma levels of PP were below or similar to postprandial values for 200, 400 and 600 pmol/kg/h and they were significantly larger with 800 and 1200 pmol/kg/h. Bile acid concentration and output did not return to values obtained with secretin plus CCK infusion after cessation of PP infusion. In conclusion, porcine PP given in physiological doses to the pig decreases bile acid output whereas biliary flow remains unaffected.  相似文献   

15.
16.
17.
The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA). The results show that PGE2, thromboxane A2 (TxA2), and PGF(2alpha) cause a dose-dependent contraction of muscle strips and cells. However, only TxA2 and PGE2 (E prostanoid 1 receptor type) antagonists induced a dose-dependent decrease in tonic tension. A COX-1 inhibitor decreased partially the tonic contraction and TxB2 (TxA2 stable metabolite) levels; a COX-2 inhibitor lowered the tonic contraction partially and reduced PGE2 levels. Both inhibitors and the nonselective COX inhibitor indomethacin abolished the tonic contraction. Transfection of human GB muscle strips with COX-1 siRNA partially lowered the tonic contraction and reduced COX-1 protein expression and TxB2 levels; COX-2 siRNA also partially reduced the tonic contraction, the protein expression of COX-2, and PGE2. Stretching muscle strips by 1, 2, 3, and 4 g increased the active tension, TxB2, and PGE2 levels; a COX-1 inhibitor prevented the increase in tension and TxB2; and a COX-2 inhibitor inhibited the expected rise in tonic contraction and PGE2. Indomethacin blocked the rise in tension and TxB2 and PGE2 levels. We conclude that PGE2 generated by COX-2 and TxA2 generated by COX-1 contributes to the maintenance of GB tonic contraction and that variations in tonic contraction are associated with concomitant changes in PGE2 and TxA2 levels.  相似文献   

18.
19.
20.
Studies were carried out to compare the effects of several physiological variables on adrenal microsomal drug (ethylmorphine demethylation) and steroid (21-hydroxylation) metabolism in guinea pigs. The rate of adrenal ethylmorphine (EM) metabolism increased with maturation in males but not females, resulting in a sex difference (M > F) in adrenal enzyme activity in adult guinea pigs. Twenty-one hydroxylase activity, in contrast, was similar in adrenals from males and females. The concentration of adrenal microsomal cytochrome P-450 was unaffected by age or sex. ACTH administration decreased adrenal EM demethylase activity but did not affect 21-hydroxylation. Testosterone, when given to female guinea pigs, increased the rate of EM metabolism and decreased 21-hydroxylase activity. Various compounds known to interact with adrenal microsomal cytochrome P-450 had divergent effects on EM metabolism and 21-hydroxylation invitro. Prostaglandins E1 and F, spironolactone, and canrenone inhibited EM demethylation but not 21-hydroxylation. Simple aromatic hydrocarbons (benzene, toluene), in contrast, inhibited 21-hydroxylation but did not affect EM metabolism. The results indicate that adrenal drug and steroid metabolism are independently regulated and that different terminal oxidases (cytochrome P-450) are probably involved in adrenal 21-hydroxylation and EM demethylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号