首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary We have analysed fifteen classical 21-hydroxylase deficiency families from throughout Southern Ireland and report the serologically defined HLA-A, HLA-B, HLA-Cw, HLA-DR, C4A and C4B polymorphisms that characterize the inferred disease haplotypes. Additionally, we have used a combination of short and long range restriction mapping procedures in order to characterize the CYP21/C4 gene organization associated with individual serologically defined haplotypes. The results obtained indicate that disease haplotypes are characterized by a high frequency (33%) of CYP21B gene deletion and 8 out of 10 such deletion haplotypes are represented by the extended haplotype HLA-DR1, C4BQo, C4A3, HLA-B40(w60), HLA-Cw3, HLA-A3. Large scale length polymorphism in the CYP21/C4 gene cluster was found to conform strictly to a variable number of tandem repeats model with 4 alleles being detected. Disease haplotypes in which defective CYP21B gene expression is inferred to result from pathological point mutations show extensive diversity of associated HLA markers and include two examples of the extended HLA haplotype HLA-DR3, B8, Cw7, A1 haplotype, which has previously been reported to be negatively associated with 21-hydroxylase deficiency. One unusual disease haplotype has two CYP21 + C4 units, both of which appear to contain CYP21B-like genes.  相似文献   

2.
Summary A total of 33 Italian 21-hydroxylase (21-OH) deficiency families were investigated using a combination of short and long range restriction mapping of the CYP21/C4 gene cluster. The analyses revealed that large-scale length polymorphism in this gene cluster strictly conformed to a compound variable number of tandem repeats (VNTR) plus insertion system with between one and four CYP21 + C4 units and seven BssHII restriction fragment length polymorphisms (RFLPs) (75kb, 80kb, 105kb, 110kb, 135kb, 140kb and 180kb). A total of 9/66 disease haplotypes, but only 1/61 nondisease haplotypes, showed evidence of gene addition by exhibiting three or more CYP21 + C4 repeat units. Of these, two were identified in one 21-OH deficiency patient who has a total of eight CYP21 + C4 units, being homozygous for the HLA haplotype DR2 DQ2 B5 A28. This haplotype carries four CYP21 + C4 units, three of which contain CYP21A-like genes and one of which contains a CYP21B-like gene that presumably carries a pathological point mutation. Of the other gene addition haplotypes associated with 21-OH deficiency, four show three CYP21 + C4 units flanked by HLA-DR1 and HLA-B14 markers. Although such haplotypes have commonly been associated with non-classical 21-OH deficiency, three examples in the present study are unexpectedly found in two salt-wasting patients, who are respectively homozygous or heterozygous for this haplotype. Only 7/66 disease haplotypes showed evidence of a CYP21B gene deletion.  相似文献   

3.
Steroid 21-hydroxylase deficiency, the primary cause of congenital adrenal hyperplasia, is caused by defects of the CYP21A2 gene. As a complement to hormonal measurements, mutation analysis of CYP21A2 is an important tool in the diagnosis of steroid 21-hydroxylase deficiency. Contemporary mutation-detection protocols based on the polymerase chain reaction often depend on the assumption that no more than one CYP21A2 gene is present on each chromosome 6. We describe three haplotypes with two CYP21A2 genes on the same chromosome, with defects typical of salt-losing steroid 21-hydroxylase deficiency in one of those genes, but not necessarily in the other. The frequency of these haplotypes in the general population is 6/365 (1.6%), so they are no less common than other haplotypes that indeed carry steroid 21-hydroxylase deficiency. Chromosomes that carry two CYP21A2 genes therefore represent a significant pitfall in the molecular diagnosis of steroid 21-hydroxylase deficiency. We recommend that, whenever CYP21A2 mutation analysis of an individual who is not a known carrier of steroid 21-hydroxylase deficiency is performed, the overall structure of the CYP21/ C4 region (the RCCX area) is determined by haplotyping to avoid erroneous assignment of carrier status.  相似文献   

4.
We mapped crossover sites in chimeric, recombinant CYP21 genes from six patients with salt-losing congenital adrenal hyperplasia (CAH). Nucleotide sequences unique to the CYP21A pseudogene or to the active CYP21B gene were mapped using gene-specific restriction sites and oligonucleotide hybridizations. Each chimeric CYP21 gene in the CYP21-deletion linked haplotypes contained sequences near the 5' end that were characteristic of CYP21A and only a single transition from sequences of CYP21A to those of CYP21B at the 3' end. The transitions all occurred within either of two discrete regions (+470 to +999 and +1375 to +1993). All eight chimeric CYP21 genes coupled with HLA-Bw47 in five unrelated patients had the CYP21A-CYP21B sequence transition within the same gene region (+1375 to +1993). One of the three other "CYP21B deletion" haplotypes (HLA-B7) had a sequence transition within this same region, while in the other two haplotypes (HLA-B61 and HLA-B18) the transition occurred between base pairs +470 and +999. By contrast, both CYP21 genes in a haplotype containing a gene conversion of CYP21B to CYP21A contained apparent transitions between sequences of CYP21A and CYP21B. We conclude that a single, unequal crossingover between the CYP21A and the CYP21B genes yields deletion of the active CYP21 gene and salt-losing CAH and that these crossingovers do not occur randomly within the CYP21 genes of our patients.  相似文献   

5.
Congenital adrenal hyperplasia (CAH) due to steroid 21-hydroxylase deficiency is a common inherited defect of adrenal steroid hormone biosynthesis. Unusually for genetic disorders, the majority of mutations causing CAH apparently result from recombinations between the CYP21 gene encoding the 21-hydroxylase enzyme and the closely linked, highly homologous pseudogene CYP21P. The CYP21 and CYP21P genes are located in the major histocompatibility complex class III region on chromosome 6p21.3. We analyzed the mutations and recombination breakpoints in the CYP21 gene and determined the associated haplotypes in 51 unrelated Finnish families with CAH. They represent no less than half of all CYP21 deficiency patients in Finland. The results indicate the existence of multiple founder mutation-haplotype combinations in the population of Finnish CAH patients. The three most common haplotypes constituted half of all affected chromosomes; only one-sixth of the haplotypes represented single cases. Each of the common haplotypes was shown consistently to carry a typical CYP21 mutation and only in some cases was additional variation observed. Surprisingly, comparisons with previous published data revealed that several of the frequent mutation-haplotype combinations in Finland are in fact also found in many other populations of patients of European origin, thus suggesting that these haplotypes are of ancient origin. This is in clear contrast to many reports, including the present one, where a high frequency of de novo mutations in the CYP21 gene has been reported. In addition, two unique sequence aberrations in CYP21 (W302X and R356Q), not known to exist in the CYP21P pseudogene, were detected. Received: 5 September 1996 / Revised: 11 November 1996  相似文献   

6.
Steroid 21-hydroxylase deficiency is the leading cause of impaired cortisol synthesis in congenital adrenal hyperplasia (CAH). We have studied the structure of the CYP21B gene in 30 unrelated CAH patients using the polymerase chain reaction (PCR) to differentiate the active CYP21B gene from its highly related CYP21A pseudogene. The PCR approach obviates the need to distinguish the CYP21A and CYP21B genes by restriction endonuclease digestion and electrophoresis before analysis with labeled probes. Furthermore, direct nucleotide sequence analysis of CYP21B genes is demonstrated on the PCR-amplified DNA. Gene deletion of CYP21B, gene conversion of the entire CYP21B gene to CYP21A, frame shift mutations in exon 3, an intron 2 mutation that causes abnormal RNA splicing, and a mutation leading to a stop codon in exon 8 appear to be the major abnormalities of the CYP21B gene in our patients. These mutations appear to account for 21-hydroxylase deficiency in 22 of 26 of our salt-wasting CAH patients.  相似文献   

7.
Steroid 21-hydroxylase deficiency is the most common enzymatic defect causing congenital adrenal hyperplasia, an inherited disorder of cortisol biosynthesis. All mutations thus far characterized that cause this disorder appear to result from recombinations between the gene encoding the enzyme, CYP21B (CYP21), and the adjacent pseudogene, CYP21A (CYP21P). These are either deletions caused by unequal crossing-over during meiosis or apparent transfers of deleterious sequences from CYP21A to CYP21B, a phenomenon termed gene conversion. However, a small percentage of alleles do not carry such a mutation. We analyzed DNA from a patient with the mild, nonclassic form of 21-hydroxylase deficiency, who carried one allele that had no gene conversions detectable by hybridization with oligonucleotide probes. Sequence analysis revealed that this allele carried two missense mutations, R339H and P453S, neither of which has been previously observed in CYP21A or CYP21B. Each of these mutations was introduced into CYP21 cDNA which was then expressed in COS1 cells using a vaccinia virus system. Each mutation reduced the ability of the enzyme to 21-hydroxylate 17-hydroxyprogesterone to 50% of normal and the ability to metabolize progesterone to 20% of normal. Thus, each of these mutations represents a potential nonclassic 21-hydroxylase deficiency allele that is not the result of an apparent gene conversion.  相似文献   

8.
Congenital adrenal hyperplasia (CAH), one of the most common autosomal recessive disorders, is caused primarily by defects in the gene encoding steroid 21-hydroxylase, CYP21B. The molecular diagnosis of CAH, important for prenatal diagnosis, carrier detection, and a better understanding of the various clinical CAH forms, is complicated by the close proximity of a highly similar pseudogene, CYP21A, containing (and probably donating, by gene conversion-like events) most of the defects underlying CAH. In this study, we describe an efficient strategy to identify molecular defects causing CAH: polymerase chain reaction-amplified CYP21 loci are cloned and hybridized to a set of oligonucleotides, allowing rapid and allele-specific identification of all known CYP21B mutations relevant to 21-hydroxylase function. Possible new mutations can be identified by subsequent nucleic acid sequencing provided they reside within the cloned CYP21B fragment (from the TATA box to the 8th of the 10 CYP21B gene exons). Using this method, the CYP21B gene mutations of a heterozygous carrier and 25 CAH patients have been identified by oligonucleotide hybridization. All disease haplotypes seem to have been generated by recombinational events involving the CYP21A pseudogene. In 5 individuals, these data were subsequently verified by nucleic acid sequencing. The procedure can be used for diagnostic applications and may facilitate identification of new CYP21B defects.  相似文献   

9.
We studied 37 unrelated families with a history of 21-hydroxylase deficiency (CYP21D) for eight common mutations and gene deletions in the 21-hydroxylase (CYP21) gene. We found de novo mutations in the CYP21 gene in two CYP21D patients. Analysis for eight common mutations in the 21-hydroxylase gene as well as large gene deletions was accomplished using polymerase chain reaction (PCR) followed by amplified created restriction site (ACRS) or restriction fragment length polymorphism (RFLP) and Southern blot followed by hybridization to a CYP21-specific probe. Linkage analysis was performed using microsatellite markers flanking the CYP21 gene. Ten short tandem repeat (STR) markers were used to confirm parentage in the two de novo mutation cases. In two prenatal diagnosis cases, an intron 2-13A/C>G mutation was identified in the proband, but not in the fetus, although the proband and fetus had identical linkage markers. Subsequently, the mutation was confirmed to be absent in the parents' genome and misparentage was ruled out. Our findings are consistent with previous studies showing a de novo mutation frequency of approximately 1.0-1.5% in the CYP21 gene. This new mutation rate is high relative to the rate of approximately one in one million for other autosomal recessive disorders. Thus, the de novo mutation rate in the CYP21 gene is not negligible. It must be considered and discussed in prenatal diagnosis and genetic counseling for this relatively common inherited disorder.  相似文献   

10.
Congenital adrenal hyperplasia caused by 21-hydroxylase deficiency is a common autosomal recessive disorder resulting from mutations in the 21-hydroxylase (CYP21) gene. To develop a strategy to screen for the most commonly occurring CYP21 mutations in Brazil, we performed molecular genotype analysis on 73 children with CAH representing 71 unrelated families. The techniques used for CYP21 molecular genotype analysis were: restriction fragment length polymorphism, single-strand conformational polymorphism, allele-specific oligonucleotide hybridization, allele-specific polymerase chain reaction amplification, and heteroduplex analyses. Mutations were identified on all but eight affected alleles. The intron 2 splicing mutation was the most frequently identified mutation. Screening for the most common mutations detected at least one mutation on 132/142 (93%) alleles. Multiple CYP21 mutations were detected on 16.2% of alleles. The high frequency of multiple mutations on a single allele emphasizes the importance of thorough and accurate molecular genotype analysis of the complex CYP21 locus.  相似文献   

11.
A point mutation within exon 7 producing an amino acid coding change and a recognition site for the endonuclease Ncol has been reported in the HLA-Bw47-linked CYP21A pseudogene and some mutant CYP21B (steroid 21-hydroxylase) genes of patients with congenital adrenal hyperplasia (CAH). Whether this mutation is deleterious was not demonstrated. We analyzed DNA from various subjects for the presence of the exon 7 Ncol site: group 1, 10 normal subjects; group 2, 11 patients with salt-losing CAH; and group 3, 18 members of an Amish pedigree in which 10 expressed HLA-Bw47 not linked to CAH. Southern blots of Ncol-digested genomic DNA which were hybridized with CYP21 cDNA showed that four subjects of group 1 had a heterozygous Ncol pattern. In group 2, seven patients had the Ncol site; two of them were homozygous for the site and had deletions of both CYP21B genes. The other five were heterozygous for the Ncol site, which was linked to a CYP21B deletion and a HLA-Bw47 haplotype. In group 3, no one exhibited the exon 7 Ncol site. To map the Ncol sites to CYP21A or CYP21B in the normal subjects, DNA from the four Ncol heterozygous subjects was double digested with Ncol and Mbol and hybridized with CYP21 cDNA. Ncol-Mbol fragments unique to CYP21A were identified in all four, but the smaller CYP21B-specific fragments were not detected. Their genomic DNA in the region of exon 7 (bases +1167 to +2058) was then amplified, cloned, and sequenced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The mild nonclassic form of steroid 21-hydroxylase deficiency is one of the most common autosomal recessive disorders in humans, occurring in almost 1% of caucasians and about 3% of Ashkenazi Jews. Many patients with this disorder carry a Val-281----Leu missense mutation in the CYP21 gene. This and most other mutations causing 21-hydroxylase deficiency are normally present in the CYP21P pseudogene and have presumably been transferred to CYP21 by gene conversion. To identify other potential nonclassic alleles, we used recombinant vaccinia virus to express two mutant enzymes carrying the mutations Pro-30----Leu (normally present in CYP21P) and Ser-268----Thr (considered a normal polymorphism of CYP21). Whereas the activity of the protein carrying the Ser----Thr mutation was indeed indistinguishable from the wild type, the enzyme with the Pro----Leu substitution had 60% of wild-type activity for 17-hydroxyprogesterone and about 30% of normal activity for progesterone when assayed in intact cells. When kinetic analysis of the latter mutant enzyme was performed in cellular lysates, the first order rate constants (maximum velocity/dissociation constant) for both substrates were reduced 10- to 20-fold compared with those for the wild-type enzyme. Pro-30 is conserved in many microsomal P450 enzymes and may be important for proper orientation of the enzyme with respect to the aminoterminal transmembrane segment. The Pro----Leu mutation was present in 5 of 18 patients with nonclassic 21-hydroxylase deficiency, suggesting that this mutation indeed acts as a nonclassic deficiency allele.  相似文献   

13.
Summary Defects in the enzyme, steroid 21-hydroxylase, result in congenital adrenal hyperplasia (CAH), a common autosomal recessive disorder of cortisol biosynthesis. The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) have been mapped in the HLA complex on chromosome 6p, adjacent to the complement genes C4B and C4A, about 80 kb from the factor B gene. Molecular analyses of patients with CAH have shown that the cause of the defect may be either a deletion, a point mutation or a conversion of the active gene. Linkage of the disease to HLA has previously been studied by several groups. We have analyzed DNAs from patients with classical and non-classical CAH and from their family members, by probing with CYP21, C4 and BF cDNAs. In 70% of the CAH haplotypes studied, the defective CYP21B gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis, and presumably bore point mutations. In the remaining chromosomes, evidence for gene conversions, deletions and various deleterious mutations of the CYP21B gene is given. Moreover, our linkage studies show that a polymorphic TaqI cleavage site in the factor B gene, recently described by us, may be a new and useful genetic marker, because we found this TaqI restriction site only in unaffected haplotypes carrying functional CYP21B genes and, therefore, in negative association with the defective CYP21B gene.  相似文献   

14.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

15.
Congenital adrenal hyperplasia (CAH) is a common recessive genetic disease caused mainly by steroid 21-hydroxylase (P450c21) deficiency. Many forms of CAH exist resulting from various mutations of the CYP21B gene. We sequenced CYP21B cDNA from a normal person and its genes from a patient with simple virilizing CAH. When comparing several CYP21B sequences, we found it was polymorphic. In the patient, a single base substitution replaced Ile172 (ATC) with Asn (AAC) in one allele while Arg356 (CGG) was converted to Trp (TGG) in the other. A normal P450c21 cDNA clone was transfected into COS-1 cells to produce 21-hydroxylase activity toward its substrates, progesterone and 17-hydroxyprogesterone. Mutants corresponding to Asn172 or Trp356 mutation were constructed by site-directed mutagenesis of the normal c21 cDNA clone. They failed to produce active enzyme toward either substrate upon transfection into COS-1 cells, demonstrating that these mutations caused CAH. Aligning sequences with other P450s, Ile172 could be located in the membrane anchoring domain and Arg356 in the substrate-binding site of P450c21. Both mutations are present in the CYP21A1P pseudogene, suggesting that they may be transferred from CYP21A1P by gene conversion events.  相似文献   

16.
The human steroid 21-hydroxylase gene, CYP21B, and its closely homologous pseudogene, CYP21A, are each normally located centromeric to a complement C4 gene C4B and C4A respectively, in an organization suggesting tandem duplication of a CYP21 + C4 unit. Such an organization has been considered to facilitate gene deletion and addition events by unequal crossover between the tandem repeats. However, the large size (approximately 30 kb) of the individual CYP21 + C4 repeat units together with the difficulty in identifying reliable CYP21A- and CYP21B-specific markers has prevented direct monitoring of gene organization on individual haplotypes by conventional Southern analyses. In the present investigation we have sought to clarify the CYP21 and C4 gene organization in members of 32 British 21-hydroxylase deficiency families by employing additional experimental approaches, notably a long-range restriction mapping approach, which permits assessment through a VNTR type of analysis, of the number of CYP21 and C4 units on individual haplotypes. Our results show that there is a very high frequency (33%) of 21-hydroxylase deficiency haplotypes where functional CYP21B gene sequence has been removed as a consequence of CYP21 + C4 gene deletion while several haplotypes show evidence of gene addition. In each case that we have investigated the gene deletion and gene addition haplotypes differ in length from conventional haplotypes by integral multiples of approximately 30 kb, which strongly supports the involvement of unequal crossover mechanisms. Additionally, the comparatively frequent occurrence of CYP21 fusion genes which contain both CYP21A- and CYP21B-associated markers is suggested by the combined data from Southern analyses, long-range restriction mapping and characterization of selected regions of CYP21 genes which have been amplified in vitro.  相似文献   

17.
Disorders of the CYP21 gene, which is located within the major histocompatibility complex on the short arm of chromosome 6, are the leading causes of congenital adrenal hyperplasia (CAH). The coding gene and a highly homologous pseudogene are tandemly arranged with the two genes for the fourth component of complement (C4A and C4B). To analyse the prevalence rates of mutations of the CYP21 genes and the segregation of the CYP21 genes with their corresponding human leucocyte antigen (HLA)-haplotypes, 21 families with one or two children with the severe form of 21-hydroxylase deficiency were studied. Mutations of the CYP21 gene on their corresponding HLA-haplotype were detected by hybridisation of polymerase chain reaction (PCR)-amplified genomic DNA with sequence-specific oligonucleotides and solid phase direct sequencing. Our study has shown the following. (1) A single basepair mutation (AG or CG) within the second intron is the most frequent mutation leading to impaired 21-hydroxylase activity. This mutation is only detected in HLA-haplotypes associated with the salt-wasting form of CAH. (2) A large deletion of part or all of the CYP21 gene is associated with the HLA-haplotype A3, BW47, C6, DR7, DR53, DQ2 but is also observed in other HLA-haplotypes and can be detected by a simple rapid PCR restriction fragment length polymorphism method. (3) Two alleles of the coding CYP21 gene differing in a leucine codon within the first exon, (formerly described as a mutation associated with 21-hydroxylase deficiency) have been found with an equal distribution in patients with 21-hydroxylase deficiency, non-disease HLA-haplotypes and the local healthy controls.  相似文献   

18.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessively inherited disorders characterized by impaired production of adrenal steroids. Approximately 95% of all CAH are caused by mutations of the CYP21A2 that encodes 21-hydroxylase. In this study, mutation analyses of CYP21A2 were performed in 48 CAH patients from 45 Turkish families with the clinical diagnosis of 21-hydroxylase deficiency (21OHD). While in 39 (86.7%) of 21OHD patients, disease causing CYP21A2 mutations were identified in both alleles, in two 21OHD patients CYP21A2 mutations were identified only in one allele. In four patients, mutation was not detected at all. In total, seventeen known and one novel, disease causing CYP21A2 mutations were observed. Among identified mutations, previously described c.293-13C/A>G, large rearrangements and p.Q319X mutations were the most common mutations accounting for 33.3%, 14.4% and 12.2% of all evaluated chromosomes, respectively. In six families (13.3%) a novel founder mutation, c.2T>C (p.M1?), inactivating the translation initiation codon was found. This mutation is not present in pseudogene CYP21A1P and causes the classical form of the disease in six patients. In addition, depending on the nature of the rearrangements CYP21A1P/CYP21A2 chimeras were further classified as CHc/d, and CH-1c was shown to be the most prominent chimera in our study group. In conclusion, with this study we identified a novel founder CYP21A2 mutation and suggest a further classification for CYP21A1P/CYP21A2 chimeras depending on the combination of junction site position and whether it is occurred as a result of deletion or conversion. Absence of disease causing mutation of CYP21A2 in ten of screened ninety chromosomes suggests the contribution of regulatory elements in occurrences of CAH due to the 21OHD.  相似文献   

19.
Lesions in the gene encoding the adrenal enzyme steroid 21-hydroxylase (P450c21) result in defective adrenal cortisol synthesis, often accompanied by aldosterone deficiency. The symptoms range from severe neonatal disease to inconspicuous symptoms in adulthood depending on the nature of the mutations. The 21-hydroxylase gene is present in close proximity to a highly homologous pseudogene, and both genes show variation in copy number between individuals. For complete DNA sequence characterization, we have applied selective polymerase chain reaction amplification and direct sequencing of all full-length steroid 21-hydroxylase genes present in individuals. Using healthy individuals with only one remaining steroid 21-hydroxylase allele as normal references, a new allele was found in two siblings, in whom clinical and laboratory findings demonstrated moderate enzyme deficiency. Full-length sequencing of this allele displayed an Arg 484 to Pro codon change in exon 10, in the same position as a previously identified GG to C mutation found in a patient with severe 21 -hydroxylase deficiency. Arg 484 is located within a stretch of amino acids that are highly conserved between mammalian 21-hydroxylases. The finding of the presently reported 21-hydroxylase allele indicates that the GG to C mutation from the severely affected patient has arisen by a two-step mechanism, consisting of a G to C transversion accompanied by an adjacent G deletion. When sequencing 26 pseudogenes, both these mutations, which are not present in the pseudogenes hitherto reported, were found at low frequency together with a number of other polymorphisms. Thus, also rare mutations can spread via the pseudogene and can therefore be expected to arise independently in unrelated individuals.  相似文献   

20.
Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease of steroid biosynthesis in humans. More than 90% of all CAH cases are caused by mutations of the 21-hydroxylase gene (CYP21A2), and approximately 75% of the defective CYP21A2 genes are generated through an intergenic recombination with the neighboring CYP21A1P pseudogene. In this study, the CYP21A2 gene was genotyped in 50 patients in Tunisia with the clinical diagnosis of 21-hydroxylase deficiency. CYP21A2 mutations were identified in 87% of the alleles. The most common point mutation in our population was the pseudogene specific variant p.Q318X (26%). Three novel single nucleotide polymorphism (SNP) loci were identified in the CYP21A2 gene which seems to be specific for the Tunisian population. The overall concordance between genotype and phenotype was 98%. With this study the molecular basis of CAH has been characterized, providing useful results for clinicians in terms of prediction of disease severity, genetic and prenatal counseling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号