首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initial uptake of Mn2+ and Sr2+ in the yeast Saccharomyces cerevisiae was studied in order to investigate the selectivity of the divalent cation uptake system and the possible involvement of the plasma-membrane ATPase in this uptake. The initial uptake rates of the two ions were not significantly different. This ruled out a direct role of the plasma-membrane ATPase, since this ATPase is specific for Mn2+ compared to Sr2+. After 1 h uptake, Mn2+ had accumulated 10-times more than Sr2+. Influx of Mn2+ and Sr2+ remained unchanged during that time, however. The differences in accumulation level found for Mn2+ and Sr2+ could be ascribed to a greater efflux of Sr2+ as compared with Mn2+. Probably this greater efflux of Sr2+ was only apparent, since differential extraction of the yeast cells revealed that Mn2+ is more compartmentalised than Sr2+, giving rise to a lower relative cytoplasmic Mn2+ concentration.  相似文献   

2.
Process of Pb2 accumulation in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Most of the Pb2+ taken up by Saccharomyces cerevisae was deposited in the inner part of the cells after 2 h. In the Pb2 accumulation experiments, the time to reach an equilibrium state was significantly shortened from 96 h to 24 h as the cell dry weight increased from 0.56 g/l to 5.18 g/l. The penetration time of Pb2+ to reach on the interacellular region (2 h) was quite different from that on the extracellular region (3 min). In the case of S. cerevisiae, the first step which a Pb2+ binds to cell wall within 3[f]5 min is metabolism-independent and the second step within 24 h is metabolism-dependent followed by the third step which is metabolism-dependent or -independent after 24 h.  相似文献   

3.
Pb2+ accumulation in Saccharomyces cerevisiae changed by Hg2+ and cell conditions. The accumulated Pb2+ amounts decreased from 0.22 to 0.02?mmol Pb2+/g cell dry weight by the existence of Hg2+. But the total metals accumulation (0.42?mmol metal ions/g cell dry weight) was not changed. The order of accumulated Pb2+ amounts (mg Pb2+/g cell dry weight) according to the cell conditions at an equilibrium state was shown as the original cell (260)?>?5?times autoclaved cell for 15?min (150)?>?grinded cell after drying (100)?>?autoclaved cell for 5?min (30).  相似文献   

4.
The optimum pH conditions of Pb2+ accumulation in Saccharomyces cerevisiae and Aureobasidium pullulans were 4~5 and 6~7, respectively. The initial Pb2+ accumulation rates according to the increase of initial Pb2+ concentration and pH were increased both in S. cerevisie and A. pullulans. And the initial Pb2+ accumulation rate of A. pullulans was much higher than that of S. cerevisiae because of the difference of Pb2+ accumulation mechanism. The Pb2+ accumulation isotherm of S. cerevisae obeyed a fully competitive inhibition, whereas that of A. pullulans showed a mixed inhibition of competition and non-competition associated with the proton (H+) as an accumulation inhibitor.  相似文献   

5.
The vacuole is the major site of intracellular Ca(2+) storage in yeast and functions to maintain cytosolic Ca(2+) levels within a narrow physiological range via a Ca(2+) pump (Pmc1p) and a H(+)/Ca(2+) antiporter (Vcx1p) driven by the vacuolar H(+)-ATPase (V-ATPase). We examined the function of the V-ATPase in cytosolic Ca(2+) homeostasis by comparing responses to a brief Ca(2+) challenge of a V-ATPase mutant (vma2Delta) and wild-type cells treated with the V-ATPase inhibitor concanamycin A. The kinetics of the Ca(2+) response were determined using transgenic aequorin as an in vivo cytosolic Ca(2+) reporter system. In wild-type cells, the V-ATPase-driven Vcx1p was chiefly responsible for restoring cytosolic Ca(2+) concentrations after a brief pulse. In cells lacking V-ATPase activity, brief exposure to elevated Ca(2+) compromised viability, even when there was little change in the final cytosolic Ca(2+) concentration. vma2Delta cells were more efficient at restoring cytosolic [Ca(2+)] after a pulse than concanamycin-treated wild-type cells, suggesting long term loss of V-ATPase triggers compensatory mechanisms. This compensation was dependent on calcineurin, and was mediated primarily by Pmc1p.  相似文献   

6.
Mg(2+)-dependent phosphatidate (PA) phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) catalyzes the dephosphorylation of PA to yield diacylglycerol and P(i). In this work, we identified the Saccharomyces cerevisiae PAH1 (previously known as SMP2) gene that encodes Mg(2+)-dependent PA phosphatase using amino acid sequence information derived from a purified preparation of the enzyme (Lin, Y.-P., and Carman, G. M. (1989) J. Biol. Chem. 264, 8641-8645). Overexpression of PAH1 in S. cerevisiae directed elevated levels of Mg(2+)-dependent PA phosphatase activity, whereas the pah1Delta mutation caused reduced levels of enzyme activity. Heterologous expression of PAH1 in Escherichia coli confirmed that Pah1p is a Mg(2+)-dependent PA phosphatase enzyme and showed that its enzymological properties were very similar to those of the enzyme purified from S. cerevisiae. The PAH1-encoded enzyme activity was associated with both the membrane and cytosolic fractions of the cell, and the membrane-bound form of the enzyme was salt-extractable. Lipid analysis showed that mutants lacking PAH1 accumulated PA and had reduced amounts of diacylglycerol and its derivative triacylglycerol.ThePAH1-encoded Mg(2+)-dependent PA phosphatase shows homology to mammalian lipin, a fat-regulating protein whose molecular function is unknown. Heterologous expression of human LPIN1 in E. coli showed that lipin 1 is also a Mg(2+)-dependent PA phosphatase enzyme.  相似文献   

7.
Cystathionine accumulation in Saccharomyces cerevisiae.   总被引:6,自引:3,他引:3       下载免费PDF全文
A cysteine-dependent strain of Saccharomyces cerevisiae and its prototrophic revertants accumulated cystathionine in cells. The cystathionine accumulation was caused by a single mutation having a high incidence of gene conversion. The mutation was designated cys3 and was shown to cause loss of gamma-cystathionase activity. Cysteine dependence of the initial strain was determined by two linked and interacting mutations, cys3 and cys1 . Since cys1 mutations cause a loss of serine acetyltransferase activity, our observation led to the conclusion that S. cerevisiae synthesizes cysteine by sulfhydrylation of serine with hydrogen sulfide and by cleavage of cystathionine which is synthesized from serine and homocysteine.  相似文献   

8.
The relationship between Pb2+ accumulation and cation (K+, Mg2+, Ca2+) release in Saccharomyces cerevisiae was extensively investigated. As Pb2+ accumulation proceeded, the release of cellular metal ions such as K+, Mg2+ and Ca2+ was concomitantly released within 24 h, thereafter Pb2+ penetrated into the inner cellular parts and consequently plasmolysis of the cell was observed by TEM analysis. Pb2+ accumulation process in S. cerevisiae after 24 h was metabolism-independent because of the absence of cell viability. As the cell storage time was prolonged, the released amount of K+ was markedly increased, while the amount of accumulated Pb2+ was nearly constant regardless of cell storage time and the time required to reach an equilibrium state was shortened. The autoclaved cells had less Pb2+ accumulation capacity than the untreated cells, and the amounts of released K+ and Mg2+ were very low due to the denaturation of cell surface and cell membrane.  相似文献   

9.
Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in various cellular biochemical reactions. To date the signaling pathways that regulate NAD(+) metabolism remain unclear due to the dynamic nature and complexity of the NAD(+) metabolic pathways and the difficulty of determining the levels of the interconvertible pyridine nucleotides. Nicotinamide riboside (NmR) is a key pyridine metabolite that is excreted and re-assimilated by yeast and plays important roles in the maintenance of NAD(+) pool. In this study we establish a NmR-specific reporter system and use it to identify yeast mutants with altered NmR/NAD(+) metabolism. We show that the phosphate-responsive signaling (PHO) pathway contributes to control NAD(+) metabolism. Yeast strains with activated PHO pathway show increases in both the release rate and internal concentration of NmR. We further identify Pho8, a PHO-regulated vacuolar phosphatase, as a potential NmR production factor. We also demonstrate that Fun26, a homolog of human ENT (equilibrative nucleoside transporter), localizes to the vacuolar membrane and establishes the size of the vacuolar and cytosolic NmR pools. In addition, the PHO pathway responds to depletion of cellular nicotinic acid mononucleotide (NaMN) and mediates nicotinamide mononucleotide (NMN) catabolism, thereby contributing to both NmR salvage and phosphate acquisition. Therefore, NaMN is a putative molecular link connecting the PHO signaling and NAD(+) metabolic pathways. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.  相似文献   

10.
Expression of two Saccharomyces cerevisiae genes (YG101 and YG103) that are related to the gene encoding inducible 70K protein (hsp70) is repressed upon heat shock. Mutations of the two genes were constructed in vitro and substituted into the yeast genome in place of the wild-type alleles. No phenotypic effect of single mutations of either gene was detected. However, cells containing both YG101 and YG103 mutations showed altered growth properties; double-mutation cells possess an optimal growth temperature of 37 degrees C rather than 30 degrees C and grow increasingly poorly as the temperature is lowered. Mutations of two other members of this hsp70-related multigene family, YG100 and YG102, have been analyzed (E. A. Craig and K. Jacobsen, Cell 38:841-849, 1984). Cells containing both YG100 and YG102 mutations cannot form colonies at 37 degrees C. Fusions between the YG101 and YG102 promoter regions and the YG100 and YG101 structural genes, respectively, were constructed. The YG101 promoter-YG100 structural gene fusion was not able to restore normal growth properties to the yg101- yg103- mutant. Also, yg100- yg102- cells containing the YG102 promoter-YG101 structural gene fusion were unable to grow at 37 degrees C. Failure of the protein products of related genes to rescue the relative cold sensitivity of growth suggests that members of the hsp70 multigene family are functionally distinct.  相似文献   

11.
The cells of Saccharomyces cerevisiae accumulate inorganic polyphosphate (polyP) when reinoculated on a phosphate-containing medium after phosphorus starvation. Total polyP accumulation was similar at cultivation on both glucose and ethanol. Five separate fractions of polyP: acid-soluble fraction polyP1, salt-soluble fraction polyP2, weakly alkali-soluble fraction polyP3, alkali-soluble fraction polyP4, and polyP5, have been obtained from the cells grown on glucose and ethanol under phosphate overplus. The dynamics of polyP fractions depend on a carbon source. The accumulation rates for fractions polyP2 and polyP4 were independent of the carbon source. The accumulation rates of polyP1 and polyP3 were higher on glucose, while fraction polyP5 accumulated faster on ethanol. As to the maximal polyP levels, they were independent of the carbon source for fractions polyP2, polyP3, and polyP4. The maximal level of fraction polyP1 was higher on glucose than on ethanol, but the level of fraction polyP5 was higher on ethanol. It was assumed that accumulation of separate polyP fractions has a metabolic interrelation with different energy-providing pathways. The polyphosphate nature of fraction polyP5 was demonstrated for the first time by 31P nuclear magnetic resonance spectroscopy, enzymatic assay, and electrophoresis.  相似文献   

12.
TRK1 and TRK2 encode proteins involved in K+ uptake in Saccharomyces cerevisiae. A kinetic study of Rb+ influx in trk1 TRK2, trk1 TRK2D, and trk1 trk2 mutants reveals that TRK2 shows moderate affinity for Rb+. K(+)-starved trk1 delta TRK2 cells show a low-affinity component accounting for almost the total Vmax of the influx and a moderate-affinity component exhibiting a very low Vmax. Overexpression of TRK2 in trk1 delta TRK2D cells increases the Vmax of the moderate-affinity component, and this component disappears in trk1 delta trk2 delta cells. In contrast, the low-affinity component of Rb+ influx in trk1 delta TRK2 cells is not affected by mutations in TRK2. Consistent with the different levels of activity of the moderate-affinity Rb+ influx, trk1 delta TRK2 cells grow slowly in micromolar K+, trk1 delta TRK2D cells grow rapidly, and trk1 delta trk2 delta cells fail to grow. The existence of a unique K+ uptake system composed of several proteins is also discussed.  相似文献   

13.
Cell cycle control by Ca2+ in Saccharomyces cerevisiae   总被引:11,自引:0,他引:11  
We established an experimental system suitable for study of cell cycle regulation by Ca2+ in the yeast Saccharomyces cerevisiae. Systematic cell cycle analysis using media containing various concentrations of Ca2+, a Ca2(+)-ionophore (A23187), and a Ca2(+)-chelator [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) revealed that simultaneous addition of 10 microM A23187 and 10 mM EGTA to cells growing in a Ca2(+)-deficient medium at 22 degrees C caused rapid decrease in intracellular Ca content and resulted in transient G1 arrest followed by block mostly at G2/M, as revealed by flow cytometry. Recovery from G1 arrest was not due to coordinated initiation of DNA synthesis and bud emergence: unbudded cells with S or G2/M DNA were observed. Examination of terminal phenotype suggested that Ca2+ was required at all the stages of the cell cycle except for the initiation of DNA synthesis. The intracellular cAMP level decreased within 10 min of addition of A23187 and EGTA. No significant transient G1 arrest was observed in cells incubated with 8-Br-cAMP, or RAS2val19 and delta bcy1 mutants, which produce a high level of cAMP and have constitutively activated cAMP-dependent protein kinase, respectively. These results indicate that Ca2+ is essential for cell cycle progression and suggest that Ca2+ may regulate the cAMP level. This system will be useful for genetic and molecular studies on cell cycle events regulated by Ca2+.  相似文献   

14.
An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decrease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures.  相似文献   

15.
Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.  相似文献   

16.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

17.
18.
19.
20.
Synthesis of mRNA and rRNA occur in the chromatin-rich nucleoplasm and the nucleolus, respectively. Nevertheless, we here report that a Saccharomyces cerevisiae gene, MTR3, previously implicated in mRNA transport, codes for a novel essential 28-kDa nucleolar protein. Moreover, in mtr3-1 the accumulated polyA+ RNA actually colocalizes with nucleolar antigens, the nucleolus becomes somewhat disorganized, and rRNA synthesis and processing are inhibited. A strain with a ts conditional mutation in RNA polymerase I also shows nucleolar accumulation of polyA+ RNA, whereas strains with mutations in the nucleolar protein Nop1p do not. Thus, in several mutant backgrounds, when mRNA cannot be exported i concentrates in the nucleolus. mRNA may normally encounter nucleolar components before export and proteins such as Mtr3p may be critical for export of both mRNA and ribosomal subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号