首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular mechanisms guiding the positioning of the ectoderm-endoderm boundary along the animal-vegetal axis of the sea urchin embryo remain largely unknown. We report here a role for the sea urchin homolog of the Notch receptor, LvNotch, in mediating the position of this boundary. Overexpression of an activated form of LvNotch throughout the embryo shifts the ectoderm-endoderm boundary more animally along the animal-vegetal axis, whereas expression of a dominant negative form shifts the border vegetally. Mosaic experiments that target activated and dominant negative forms of LvNotch into individual blastomeres of the early embryo, combined with lineage analyses, further reveal that LvNotch signaling mediates the position of this boundary by distinct mechanisms within the animal versus vegetal portions of the embryo. In the animal region of the embryo, LvNotch signaling acts cell autonomously to promote endoderm formation more animally, while in the vegetal portion, LvNotch signaling also promotes the ectoderm-endoderm boundary more animally, but through a cell non-autonomous mechanism. We further demonstrate that vegetal LvNotch signaling controls the localization of nuclear beta-catenin at the ectoderm-endoderm boundary. Based on these results, we propose that LvNotch signaling promotes the position of the ectoderm-endoderm boundary more animally via two mechanisms: (1) a cell-autonomous function within the animal region of the embryo, and (2) a cell non-autonomous role in the vegetal region that regulates a signal(s) mediating ectoderm-endoderm position, possibly through the control of nuclear beta-catenin at the boundary.  相似文献   

2.
3.
At fourth cleavage of sea urchin embryos four micromeres at the vegetal pole separate from four macromeres just above them in an unequal cleavage. The micromeres have the capacity to induce a second axis if transplanted to the animal pole and the absence of micromeres at the vegetal pole results in the failure of macromere progeny to specify secondary mesenchyme cells (SMCs). This suggests that micromeres have the capacity to induce SMCs. We demonstrate that micromeres require nuclear beta-catenin to exhibit SMC induction activity. Transplantation studies show that much of the vegetal hemisphere is competent to receive the induction signal. The micromeres induce SMCs, most likely through direct contact with macromere progeny, or at most a cell diameter away. The induction is quantitative in that more SMCs are induced by four micromeres than by one. Temporal studies show that the induction signal is passed from the micromeres to macromere progeny between the eighth and tenth cleavage. If micromeres are removed from hosts at the fourth cleavage, SMC induction in hosts is rescued if they later receive transplanted micromeres between the eighth and tenth cleavage. After the tenth cleavage addition of induction-competent micromeres to micromereless embryos fails to specify SMCs. For macromere progeny to be competent to receive the micromere induction signal, beta-catenin must enter macromere nuclei. The macromere progeny receive the micromere induction signal through the Notch receptor. Signaling-competent micromeres fail to induce SMCs if macromeres express dominant-negative Notch. Expression of an activated Notch construct in macromeres rescues SMC specification in the absence of induction-competent micromeres. These data are consistent with a model whereby beta-catenin enters the nuclei of micromeres and, as a consequence, the micromeres produce an inductive ligand. Between the eighth and tenth cleavage micromeres induce SMCs through Notch. In order to be receptive to the micromere inductive signal the macromeres first must transport beta-catenin to their nuclei, and as one consequence the Notch pathway becomes competent to receive the micromere induction signal, and to transduce that signal. As Notch is maternally expressed in macromeres, additional components must be downstream of nuclear beta-catenin in macromeres for these cells to receive and transduce the micromere induction signal.  相似文献   

4.
During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.  相似文献   

5.
A monoclonal antibody, Sp12, binds to cortical granules, the hyaline layer, and skeletogenic, chromogenic, and blastocoelar mesenchyme of sea urchin eggs and embryos. Adult urchins also express Sp12 antigens in the dermal layer of the test and spines. Antigen is expressed on the surface of primary mesenchyme cells after they have entered the blastocoel, and by two secondary mesenchyme derivatives--the blastocoelar cells after they have been released from the tip of the archenteron, and the pigment cells in prism stage embryos. Immunogold localizations show antigen on the surfaces of mesenchyme, within membrane bounded vesicles, and associated with the Golgi apparatus. Western blots of antigens immunoprecipitated from seven developmental stages reveal twelve antigens ranging in Mr from 35 k to 240 k. Most of these antigens appear, disappear or change Mr over the first five days of development. Characterizations of this complex array of antigens show that the epitope recognized by Sp12 is eliminated by proteolytic enzymes and endoglycosidase F, while immunoreactivity is only reduced by periodate oxidation. As well, calcium magnesium free seawater extracts a subset of antigens different from that retained by crude membrane preparations. It is proposed that the mesenchyme of sea urchin embryos produces a family of developmentally regulated cell surface and extracellular matrix glycoproteins which all exhibit a carbohydrate epitope recognized by Sp12.  相似文献   

6.
Secondary mesenchyme cells (SMCs) of the sea urchin embryo are composed of pigment cells, blastocoelar cells, spicule tip cells, coelomic pouch cells and muscle cells. To learn how and when these five types of SMCs are specified in the veg2 descendants, Notch or Nodal signaling was blocked with γ‐secretase inhibitor or Nodal receptor inhibitor, respectively. All types of SMCs were decreased with DAPT, while sensitivity to this inhibitor varied among them. Pulse‐treatment revealed that five types of SMCs are divided into “early” (pigment cells and blastocoelar cells) and “late” (spicule tip cells, coelomic pouch cells and muscle cells) groups; the “early” group was sensitive to DAPT up to the hatching, and the “late” group was sensitive until the mesenchyme blastula stage. Judging from timing of the shift of Delta‐expressing regions, it was suggested that the “early” group and “late” groups are derived from the lower and the middle tier of veg2 descendants, respectively. Interestingly, numbers of SMCs were also altered with SB431542; blastocoelar cells, coelomic pouch cells and circum‐esophageal muscles decreased, whereas pigment cells and spicule tip cells increased in number. Pulse‐treatment showed that the “early” group was sensitive up to the mesenchyme blastula stage, while the “late” group up to the onset of gastrulation. Thus, it became clear that precursor cells of the “early” and “late” groups, which are located in different regions in the vegetal plate, receive Delta and Nodal signals at different timings, resulting in the diversification of SMCs. Based on the obtained results, the specification processes of five types of SMCs are diagrammatically presented.  相似文献   

7.
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.  相似文献   

8.
Secondary mesenchyme in sea urchin embryos is released into the blastocoel after primary mesenchyme, and although these cells have been recognized for some time, we lack knowledge about many fundamental aspects of their origin and fate. Here we documented the ontogeny of one of the principal, and least well-known, types of cells derived from secondary mesenchyme. The blastocoelar cells arise from mesenchyme released from the tip of the archenteron following the initial phase of gastrulation. The cells migrate with their cell bodies suspended in the blastocoel, rather than being apposed to the basal lamina like primary mesenchyme. The cells extend numerous fine filopodia to form a network of cytoplasmic processes around the gut, along the skeletal rods, and within the larval arms. Once the network is formed, the cells maintain their positions, although they actively translocate vesicles and cytoplasm along their filopodia. Cell counts indicate there is an initial recruitment of cells during gastrulation, followed by a more gradual increase in cell number after the larva begins to feed. Lineage studies in which 16-cell-stage macromeres were injected with horseradish peroxidase indicate that almost all of the macromere-derived mesenchyme forms pigment cells and blastocoelar cells. We propose that blastocoelar cells are a distinct subset of secondary mesenchyme that forms fibroblast-like cells in the blastocoel of sea urchin embryos.  相似文献   

9.
10.
11.
12.
The sea urchin larval skeleton is produced by the primary mesenchyme (PM), a group of 32 cells descended from the four micromeres of the 16-cell embryo. The development of this lineage proceeds normally in isolated cultures of micromeres. A complementary DNA (cDNA) library was generated from cytoplasmic polyadenylated RNA isolated from differentiated micromere cultures of Strongylocentrotus purpuratus. Five clones were selected on the basis of their enrichment in differentiated PM cell RNA as compared to the polyribosomal RNAs of other embryonic cell types and other developmental stages. Each cloned cDNA hybridized to a distinct RNA that was abundant in the polyribosomes of differentiated PM cells, but absent from larval ectoderm and from 16-cell embryos. These RNAs were encoded by single or low copy genes. In situ hybridization analysis of the most abundant of these RNAs (SpLM 18) demonstrated that it was specifically limited to the skeletogenic PM of intact embryos. During the development of the PM, all five RNAs exhibited the same schedule of accumulation, appearing de novo, or increasing abruptly just before PM ingression, and remaining at relatively high levels thereafter. This pattern of RNA accumulation closely paralleled the pattern of synthesis of PM-specific proteins in general (Harkey and Whiteley, 1983) and of the SpLM 18-encoded protein specifically (Leaf et al., 1987). These results indicate that at least five distinct genes in the sea urchin, each of which encodes a PM-enriched or PM-specific mRNA, are expressed with tight coordination during development of the larval skeleton. They also demonstrate that expression of these genes in the PM is regulated primarily at the level of RNA abundance rather than RNA utilization.  相似文献   

13.
Sea urchin Brachyury homolog (HpTa) is expressed exclusively in the vegetal plate and secondary mesenchyme cells in the embryos of sea urchin Hemicentrotus pulcherrimus. In order to gain insights into the role of HpTa during sea urchin development, we designed experiments to perturb the embryo by inducing ectopic overexpression of HpTa by injecting fertilized eggs with HpTa mRNA. The overexpression of HpTa resulted in suppression of the formation of vegetal plate and secondary mesenchyme cells. We assume that the interaction of HpTa with unknown factors is required for the activation of the HpTa target genes, and that the excess amount of HpTa proteins produced from injected HpTa mRNA depletes the co-factors. In consequence, the target genes of HpTa would be repressed by the overexpression of HpTa. We suggest that HpTa is involved in the formation of the vegetal plate and the differentiation of secondary mesenchyme cells.  相似文献   

14.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

15.
16.
17.
18.
In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm-extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape.  相似文献   

19.
Skeletogenesis in the sea urchin embryo   总被引:2,自引:0,他引:2  
  相似文献   

20.
The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号