首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression.  相似文献   

2.
We examined spindle morphology and chromosome alignment in vertebrate cells after simultaneous perturbation of the chromokinesin Kid and either NuMA, CENP-E, or HSET. Spindle morphology and chromosome alignment after simultaneous perturbation of Kid and either HSET or CENP-E were no different from when either HSET or CENP-E was perturbed alone. However, short bipolar spindles with organized poles formed after perturbation of both Kid and NuMA in stark contrast to splayed spindle poles observed after perturbation of NuMA alone. Spindles were disorganized if Kid, NuMA, and HSET were perturbed, indicating that HSET is sufficient for spindle organization in the absence of Kid and NuMA function. In addition, chromosomes failed to align efficiently at the spindle equator after simultaneous perturbation of Kid and NuMA despite appropriate kinetochore-microtubule interactions that generated chromosome movement at normal velocities. These data indicate that a functional relationship between the chromokinesin Kid and the spindle pole organizing protein NuMA influences spindle morphology, and we propose that this occurs because NuMA forms functional linkages between kinetochore and nonkinetochore microtubules at spindle poles. In addition, these data show that both Kid and NuMA contribute to chromosome alignment in mammalian cells.  相似文献   

3.
The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes-imprecise chromosome alignment at metaphase and shortened spindles- exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization.  相似文献   

4.
During mitosis, the Xenopus chromokinesin Kid (Xkid) provides the polar ejection forces needed at metaphase for chromosome congression, and its degradation is required at anaphase to induce chromosome segregation. Despite the fact that the degradation of Xkid at anaphase seems to be a key regulatory factor to induce chromosome movement to the poles, little is known about the mechanisms controlling this proteolysis. We investigated here the degradation pathway of Xkid. We demonstrate that Xkid is degraded both in vitro and in vivo by APC/Cdc20 and APC/Cdh1. We show that, despite the presence of five putative D-box motifs in its sequence, Xkid is proteolyzed in a D-box-independent manner. We identify a domain within the C terminus of this chromokinesin, with sequence GxEN, whose mutation completely stabilizes this protein by both APC/Cdc20 and APC/Cdh1. Moreover, we show that this degradation sequence acts as a transposable motif and induces the proteolysis of a GST-GXEN fusion protein. Finally, we demonstrate that both a D-box and a GXEN-containing peptides completely block APC-dependent degradation of cyclin B and Xkid, indicating that the GXEN domain might mediate the recognition and association of Xkid with the APC.  相似文献   

5.
The chromokinesin Kid is important in chromosome alignment at the metaphase plate. Here, we report that Kid function is regulated by phosphorylation. We identify Ser427 and Thr463 as M phase-specific phosphorylation sites and Cdc2-cyclin B as a Thr463 kinase. Kid with a Thr463 to alanine mutation fails to be localized on chromosomes and is only detected along spindles, although it retains the ability to bind DNA or chromosomes. Localization of rigor-type mutant Kid, which shows nucleotide-independent microtubule association, is also confined to the spindle, implying that strong association of Kid with the spindle can sequester it from chromosomes. T463A substitution in DNA-binding domain-truncated Kid consistently enhances its spindle localization. At physiological ionic strength, unphosphorylated Kid shows ATP-independent microtubule association, whereas Thr463-phosphorylated Kid shows ATP dependency. Moreover, the stalk region of unphosphorylated Kid interacts with microtubules and the interaction is weakened when Thr463 is phosphorylated. Our data suggest that phosphorylation on Thr463 of Kid downregulates its affinity for microtubules to ensure reversible association with spindles, allowing Kid to bind chromosomes and exhibit its function.  相似文献   

6.
Laser microsurgery was employed to reveal kinetochore-independent forces acting on chromosome arms in crane-fly spermatocytes. When a portion of an arm situated along the interpolar axis between the equator and a pole was cut off, the resultant acentric fragment was transported poleward and outward into the peripheral domain of the spindle. If the fragment was generated well in advance of the onset of anaphase, then at the spindle periphery, it changed direction and moved away from the pole and back toward the equator. That domain-specific movement-poleward in the central spindle and away from the pole at the spindle periphery-not only provides the first evidence for polar ejection forces acting on acentric fragments in a meiotic system, but it is the first example of kinetochore-independent forces in both directions at the same stage of division. Sniglets generated by laser pulses directed at specific sites in the spindle revealed that the mechanism underlying ejection forces was specific to chromosomes. At anaphase onset, polar ejection forces ceased, and pole-directed forces took over. At that time, chromosome fragments that had been ejected to the equator moved poleward again, providing clear evidence for kinetochore-independent forces on chromosome arms during anaphase.  相似文献   

7.
The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.  相似文献   

8.
Microtubule-associated motor proteins are thought to be involved in spindle formation and chromosome movements in mitosis/meiosis. We have molecularly cloned cDNAs for a gene that codes for a novel member of the kinesin family of proteins. Nucleotide sequencing reveals that the predicted gene product is a 73 kDa protein and is related to some extent to the Drosophila node gene product, which is involved in chromosomal segregation during meiosis. A sequence similar to the microtubule binding motor domain of kinesin is present in the N-terminal half of the protein, and its ability to bind to microtubules is demonstrated. Furthermore we show that its C-terminal half contains a putative nuclear localization signal similar to that of Jun and is able to bind to DNA. Accordingly, the protein was termed Kid (kinesin-like DNA binding protein). Indirect immunofluorescence studies show that Kid colocalizes with mitotic chromosomes and that it is enriched in the kinetochore at anaphase. Thus, we propose that Kid might play a role(s) in regulating the chromosomal movement along microtubules during mitosis.  相似文献   

9.
The bipolar spindle is a highly dynamic structure that assembles transiently around the chromosomes and provides the mechanical support and the forces required for chromosome segregation. Spindle assembly and chromosome movements rely on the regulation of microtubule dynamics and a fine balance of forces exerted by various molecular motors. Chromosomes are themselves central players in spindle assembly. They generate a RanGTP gradient that triggers microtubule nucleation and stabilization locally and they interact dynamically with the microtubules through motors targeted to the chromatin. We have previously identified and characterized two of these so-called chromokinesins: Xkid (kinesin 10) and Xklp1 (kinesin 4). More recently, we found that Hklp2/kif15 (kinesin 12) is targeted to the chromosomes through an interaction with Ki-67 in human cells and is therefore a novel chromokinesin. Hklp2 also associates with the microtubules specifically during mitosis, in a TPX2 (targeting protein for Xklp2)-dependent manner. We have shown that Hklp2 participates in spindle pole separation and in the maintenance of spindle bipolarity in metaphase. To better understand the function of Hklp2, we have performed a detailed domain analysis. Interestingly, from its positioning on the chromosome arms, Hklp2 seems to restrict spindle pole separation. In the present review, we summarize the current knowledge of the function and regulation of the different kinesins associated with chromosome arms during cell division, including Hklp2 as a novel member of this so-called chromokinesin family.  相似文献   

10.
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.  相似文献   

11.
Centrosomes nucleate spindle formation, direct spindle pole positioning, and are important for proper chromosome segregation during mitosis in most animal cells. We previously reported that centromere protein 32 (CENP-32) is required for centrosome association with spindle poles during metaphase. In this study, we show that CENP-32 depletion seems to release centrosomes from bipolar spindles whose assembly they had previously initiated. Remarkably, the resulting anastral spindles function normally, aligning the chromosomes to a metaphase plate and entering anaphase without detectable interference from the free centrosomes, which appear to behave as free asters in these cells. The free asters, which contain reduced but significant levels of CDK5RAP2, show weak interactions with spindle microtubules but do not seem to make productive attachments to kinetochores. Thus CENP-32 appears to be required for centrosomes to integrate into a fully functional spindle that not only nucleates astral microtubules, but also is able to nucleate and bind to kinetochore and central spindle microtubules. Additional data suggest that NuMA tethers microtubules at the anastral spindle poles and that augmin is required for centrosome detachment after CENP-32 depletion, possibly due to an imbalance of forces within the spindle.  相似文献   

12.
The human chromokinesin Kid is a plus end-directed microtubule-based motor   总被引:7,自引:0,他引:7  
Kid is a kinesin-like DNA-binding protein known to be involved in chromosome movement during mitosis, although its actual motor function has not been demonstrated. Here, we describe the initial characterization of Kid as a microtubule-based motor using optical trapping microscopy. A bacterially expressed fusion protein consisting of a truncated Kid fragment (amino acids 1-388 or 1-439) is indeed an active microtubule motor with an average speed of approximately 160 nm/s, and the polarity of movement is plus end directed. We could not detect processive movement of either monomeric Kid or dimerizing chimeric Kid; however, low levels of processivity (a few steps) cannot be detected with our method. These results are consistent with Kid having a role in chromosome congression in vivo, where it would be responsible for the polar ejection forces acting on the chromosome arms.  相似文献   

13.
Regulation of the mitotic spindle's position is important for cells to divide asymmetrically. Here, we use Caenorhabditis elegans embryos to provide the first analysis of the temporal regulation of forces that asymmetrically position a mitotic spindle. We find that asymmetric pulling forces, regulated by cortical PAR proteins, begin to act as early as prophase and prometaphase, even before the spindle forms and shifts to a posterior position. The spindle does not shift asymmetrically during these early phases due to a tethering force, mediated by astral microtubules that reach the anterior cell cortex. We show that this tether is normally released after spindle assembly and independently of anaphase entry. Monitoring microtubule dynamics by photobleaching segments of microtubules during anaphase revealed that spindle microtubules do not undergo significant poleward flux in C. elegans. Together with the known absence of anaphase A, these data suggest that the major forces contributing to chromosome separation during anaphase originate outside the spindle. We propose that the forces positioning the mitotic spindle asymmetrically are tethered until after the time of spindle assembly and that these same forces are used later to drive chromosome segregation at anaphase.  相似文献   

14.
Accurate chromosome alignment at metaphase and subsequent segregation of condensed chromosomes is a complex process involving elaborate and only partially characterized molecular machinery. Although several spindle associated molecular motors have been shown to be essential for mitotic function, only a few chromosome arm--associated motors have been described. Here, we show that human chromokinesin human HKIF4A (HKIF4A) is an essential chromosome-associated molecular motor involved in faithful chromosome segregation. HKIF4A localizes in the nucleoplasm during interphase and on condensed chromosome arms during mitosis. It accumulates in the mid-zone from late anaphase and localizes to the cytokinetic ring during cytokinesis. RNA interference--mediated depletion of HKIF4A in human cells results in defective prometaphase organization, chromosome mis-alignment at metaphase, spindle defects, and chromosome mis-segregation. HKIF4A interacts with the condensin I and II complexes and HKIF4A depletion results in chromosome hypercondensation, suggesting that HKIF4A is required for maintaining normal chromosome architecture. Our results provide functional evidence that human KIF4A is a novel component of the chromosome condensation and segregation machinery functioning in multiple steps of mitotic division.  相似文献   

15.
Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live-cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics.  相似文献   

16.
The spindle checkpoint prevents chromosome loss by preventing chromosome segregation in cells with improperly attached chromosomes [1, 2 and 3]. The checkpoint senses defects in the attachment of chromosomes to the mitotic spindle [4] and the tension exerted on chromosomes by spindle forces in mitosis [5, 6 and 7]. Because many cancers have defects in chromosome segregation, this checkpoint may be required for survival of tumor cells and may be a target for chemotherapy. We performed a phenotype-based chemical-genetic screen in budding yeast and identified an inhibitor of the spindle checkpoint, called cincreasin. We used a genome-wide collection of yeast gene-deletion strains and traditional genetic and biochemical analysis to show that the target of cincreasin is Mps1, a protein kinase required for checkpoint function [8]. Despite the requirement for Mps1 for sensing both the lack of microtubule attachment and tension at kinetochores, we find concentrations of cincreasin that selectively inhibit the tension-sensitive branch of the spindle checkpoint. At these concentrations, cincreasin causes lethal chromosome missegregation in mutants that display chromosomal instability. Our results demonstrate that Mps1 can be exploited as a target and that inhibiting the tension-sensitive branch of the spindle checkpoint may be a way of selectively killing cancer cells that display chromosomal instability.  相似文献   

17.
During mitosis, equal segregation of chromosomes depends on proper kinetochore-microtubule attachments. Merotelic kinetochore orientation, in which a single kinetochore binds microtubules from both spindle poles [1], is a major cause of chromosome instability [2], which is commonly observed in solid tumors [3, 4]. Using the fission yeast Schizosaccharomyces pombe, we show that a proper force balance between kinesin motors on interpolar spindle microtubules is critical for correcting merotelic attachments. Inhibition of the plus-end-directed spindle elongation motors kinesin-5 (Cut7) and kinesin-6 (Klp9) reduces spindle length, tension at kinetochores, and the frequency of merotelic attachments. In contrast, merotely is increased by deletion of the minus-end-directed kinesin-14 (Klp2) or overexpression of Klp9. Also, Cdk1 regulates spindle elongation forces to promote merotelic correction by phosphorylating and inhibiting Klp9. The role of spindle elongation motors in merotelic correction is conserved, because partial inhibition of the human kinesin-5 homolog Eg5 using the drug monastrol reduces spindle length and lagging chromosome frequency in both normal (RPE-1) and tumor (CaCo-2) cells. These findings reveal unexpected links between spindle forces and correction of merotelic attachments and show that pharmacological manipulation of spindle elongation forces might be used to reduce chromosome instability in cancer cells.  相似文献   

18.
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.  相似文献   

19.
Many of the kinesin microtubule motor proteins discovered during the past 8-9 years have roles in spindle assembly and function or chromosome movement during meiosis or mitosis. The discovery of kinesin motor proteins with a clear involvement in spindle and chromosome motility, together with recent evidence that cytoplasmic dynein plays a role in chromosome distribution, has attracted great interest. The identification of microtubule motors that function in chromosome distribution represents a major advance in understanding the forces that underlie chromosome and spindle movements during cell division.  相似文献   

20.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号