首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

3.
A mathematical, three-dimensional, anatomically accurate model of the canine knee was created to determine the forces in the knee ligaments and the knee joint reaction forces during the stance phase of a slow walk. This quasi-static model considered both the tibio-femoral and patello-femoral articulations. The geometric and morphometric data of the hind limb were obtained from cadaver data. Muscle forces acting on the femur and the hip joint reaction force were determined by numerical optimization. Ligaments were modeled as non-linear-springs. Ligament material properties were obtained from the literature pertaining to the human knee. The model consists of-28 non-linear algebraic equations describing equilibrium of the femur and the patella, and geometric constraints. This system of equations was solved by a non-linear least-squares method. Results are presented for a knee with an intact cranial cruciate ligament (CCL) and for a knee with a ruptured CCL. Forces predicted to occur in the CCL by analysis of the model were found to be very similar to reported results of CCL forces measured in vivo in goats.  相似文献   

4.
This paper examined if an electromyography (EMG) driven musculoskeletal model of the human knee could be used to predict knee moments, calculated using inverse dynamics, across a varied range of dynamic contractile conditions. Muscle-tendon lengths and moment arms of 13 muscles crossing the knee joint were determined from joint kinematics using a three-dimensional anatomical model of the lower limb. Muscle activation was determined using a second-order discrete non-linear model using rectified and low-pass filtered EMG as input. A modified Hill-type muscle model was used to calculate individual muscle forces using activation and muscle tendon lengths as inputs. The model was calibrated to six individuals by altering a set of physiologically based parameters using mathematical optimisation to match the net flexion/extension (FE) muscle moment with those measured by inverse dynamics. The model was calibrated for each subject using 5 different tasks, including passive and active FE in an isokinetic dynamometer, running, and cutting manoeuvres recorded using three-dimensional motion analysis. Once calibrated, the model was used to predict the FE moments, estimated via inverse dynamics, from over 200 isokinetic dynamometer, running and sidestepping tasks. The inverse dynamics joint moments were predicted with an average R(2) of 0.91 and mean residual error of approximately 12 Nm. A re-calibration of only the EMG-to-activation parameters revealed FE moments prediction across weeks of similar accuracy. Changing the muscle model to one that is more physiologically correct produced better predictions. The modelling method presented represents a good way to estimate in vivo muscle forces during movement tasks.  相似文献   

5.
A three-dimensional mathematical model of the human knee joint was developed to examine the role of single ligaments, such as an anterior cruciate ligament (ACL) graft in ACL reconstruction, on joint motion and tissue forces. The model is linear and valid for small motions about an equilibrium position. The knee joint is modeled as two rigid bodies (the femur and the tibia) interconnected by deformable structures, including the ACL or ACL graft, the cartilage layer, and the remainder of the knee tissues (modeled as a single element). The model was demonstrated for the equilibrium condition of the knee in extension with an anterior tibial force, causing anterior drawer and hyperextension. The knee stiffness matrix for this condition was measured for a human right knee in vitro. Predicted model response was compared with experimental observations. Qualitative agreement was found between model and experiment, validating the model and its assumptions. The model was then used to predict the change in graft and cartilage forces and joint motion of the knee due to an increment of load in the normal joint both after ACL removal and with various altered states simulating ACL reconstructions. Results illustrate the interdependence between loads in the ACL graft, other knee structures, and contact force. Stiffer grafts and smaller maximum unloaded length of the ligament lead to higher graft and contact forces. Changes in cartilage stiffness alter load sharing between ACL graft and other joint tissues.  相似文献   

6.
Musculotendon actuators produce active and passive moments at the joints they span. Due to the existence of bi-articular muscles, the passive elastic joint moments are influenced by the angular positions of adjacent joints. To obtain quantitative information about this passive elastic coupling between lower limb joints, we examined the passive elastic joint properties of the hip, knee, and ankle joint of ten healthy subjects. Passive elastic joint moments were found to considerably depend on the adjacent joint angles. We present a simple mathematical model that describes these properties on the basis of a double-exponential expression. The model can be implemented in biomechanical models of the lower extremities, which are generally used for the simulation of multi-joint movements such as standing-up, walking, running, or jumping.  相似文献   

7.
Several studies have measured the elastic properties of a single human muscle-tendon unit in vivo. However the viscoelastic behavior of single human muscles has not been characterized. In this study, we adapted QLV theory to model the viscoelastic behavior of human gastrocnemius muscle-tendon units in vivo. We also determined the influence of viscoelasticity on passive length-tension properties of human gastrocnemius muscle-tendon units. Eight subjects participated in the experiment, which consisted of two parts. First, the stress relaxation response of human gastrocnemius muscle-tendon units was determined at a range of knee and ankle angles. Subsequently, passive ankle torque and ankle angle were collected during cyclic dorsiflexion and plantarflexion at a range of knee angles. Viscous parameters were determined by fitting the stress relaxation experiment data with a two-term exponential function, and elastic parameters were estimated by fitting the QLV model and viscous parameters to the cyclic experiment data. The model fitted the experimental data well at slow speeds (RMSE: 1.7 ± 0.5N) and at fast speeds (RMSE: 1.9 ± 0.2N). Muscle-tendon units demonstrated a large amount of stress relaxation. Nonetheless, viscoelastic passive length-tension curves estimated with the QLV model were similar to elastic passive length-tension curves obtained using a model that ignored viscosity. There was little difference in the elastic passive length-tension curves at different loading rates. We conclude that (a) the QLV model can be used to quantify viscoelastic behaviors of relaxed human gastrocnemius muscle-tendon units in vivo, and (b) over the range of velocities we examined, the velocity of loading has little effect on the passive length-tension properties of human gastrocnemius muscle-tendon units.  相似文献   

8.
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0–10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted as an ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait.  相似文献   

9.
Two-dimensional dynamic modelling of human knee joint   总被引:1,自引:0,他引:1  
A mathematical dynamic model of the two-dimensional representation of the knee joint is presented. The profiles of the joint surfaces are determined from X-ray films and they are represented by polynomials. The joint ligaments are modelled as nonlinear elastic springs of realistic stiffness properties. Nonlinear equations of motion coupled with nonlinear constraint conditions are solved numerically. Time derivatives are approximated by Newmark difference formulae and the resulting nonlinear algebraic equations are solved employing the Newton-Raphson iteration scheme. Several dynamic loads are applied to the center of mass of the tibia and the ensuing motion is investigated. Numerical results on ligament forces, contact point locations between femur and tibia, and the orientation of tibia relative to femur are presented. The results are shown to be consistent with the anatomy of the knee joint.  相似文献   

10.
Knee injuries, especially those that affect the cruciate and lateral ligaments, are one of the most serious and frequent pathologies that affect the lower human extremity. Hence, the aim of this study is to develop a dynamic model for the lower extremity capable of estimating forces, forces in the cruciate and collateral ligaments and those normal to the articular cartilage, generated in the knee. The proposed model considers a four-bar mechanism in the knee, a spherical joint in the pelvis and a revolute one in the ankle. The four-bar mechanism is obtained by a synthesis process. The dynamic model includes the inertial properties of the femur, tibia, patella and the foot, the ground reaction force and the most important muscles in the knee. Muscle forces are estimated using an optimisation technique. Results from the application of the model on a real human task are presented.  相似文献   

11.
The function of the ligaments as local controllers, independent of the central nervous system, in maintaining the integrity of the joint is demonstrated by modelling the human knee in the sagittal plane, and studying its anterior-posterior motion. In addition to the ligaments, the model includes the characteristic geometry of the joint surface and some muscle groups. The connecting reaction forces at the point of contact between the tibia and the femur are considered to be constraint forces due to three different surface motions--gliding, rolling and combined gliding and rolling. It is demonstrated that the ligamentous structure maintains these holonomic and nonholonomic constraints that describe the joint motion, and that stability of the knee joint is provided mainly by ligaments. Muscular structures further stabilize and contribute to joint movement. Computer simulation of rolling movement of the knee is presented to illustrate the importance of the ligaments for joint integrity and stability.  相似文献   

12.
The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.  相似文献   

13.
A variety of musculoskeletal models are applied in different modelling environments for estimating muscle forces during gait. Influence of different modelling assumptions and approaches on model outputs are still not fully understood, while direct comparisons of standard approaches have been rarely undertaken. This study seeks to compare joint kinematics, joint kinetics and estimated muscle forces of two standard approaches offered in two different modelling environments (AnyBody, OpenSim). It is hypothesised that distinctive differences exist for individual muscles, while summing up synergists show general agreement. Experimental data of 10 healthy participants (28 ± 5 years, 1.72 ± 0.08 m, 69 ± 12 kg) was used for a standard static optimisation muscle force estimation routine in AnyBody and OpenSim while using two gait-specific musculoskeletal models. Statistical parameter mapping paired t-test was used to compare joint angle, moment and muscle force waveforms in Matlab. Results showed differences especially in sagittal ankle and hip angles as well as sagittal knee moments. Differences were also found for some of the muscles, especially of the triceps surae group and the biceps femoris short head, which occur as a result of different anthropometric and anatomical definitions (mass and inertia of segments, muscle properties) and scaling procedures (static vs. dynamic). Understanding these differences and their cause is crucial to operate such modelling environments in a clinical setting. Future research should focus on alternatives to classical generic musculoskeletal models (e.g. implementation of functional calibration tasks), while using experimental data reflecting normal and pathological gait to gain a better understanding of variations and divergent behaviour between approaches.  相似文献   

14.
The purpose of this work is to develop a 3D inverse dynamic model of the human finger for estimating the muscular forces involved during free finger movements. A review of the existing 3D models of the fingers is presented, and an alternative one is proposed. The validity of the model has been proved by means of two simulations: free flexion-extension motion of all joints, and free metacarpophalangeal (MCP) adduction motion. The simulation shows the need for a dynamic model including inertial effects when studying fast movements and the relevance of modelling passive forces generated by the structures studying free movements, such as the force exerted by the muscles when they are stretched and the passive action of the ligaments over the MCP joint in order to reproduce the muscular force pattern during the simulation of the free MCP abduction-adduction movements.  相似文献   

15.
A validated three-dimensional computational model of a human knee joint   总被引:7,自引:0,他引:7  
This paper presents a three-dimensional finite element tibio-femoral joint model of a human knee that was validated using experimental data. The geometry of the joint model was obtained from magnetic resonance (MR) images of a cadaveric knee specimen. The same specimen was biomechanically tested using a robotic/universal force-moment sensor (UFS) system and knee kinematic data under anterior-posterior tibial loads (up to 100 N) were obtained. In the finite element model (FEM), cartilage was modeled as an elastic material, ligaments were represented as nonlinear elastic springs, and menisci were simulated by equivalent-resistance springs. Reference lengths (zero-load lengths) of the ligaments and stiffness of the meniscus springs were estimated using an optimization procedure that involved the minimization of the differences between the kinematics predicted by the model and those obtained experimentally. The joint kinematics and in-situ forces in the ligaments in response to axial tibial moments of up to 10 Nm were calculated using the model and were compared with published experimental data on knee specimens. It was also demonstrated that the equivalent-resistance springs representing the menisci are important for accurate calculation of knee kinematics. Thus, the methodology developed in this study can be a valuable tool for further analysis of knee joint function and could serve as a step toward the development of more advanced computational knee models.  相似文献   

16.
Moments measured by a dynamometer in biomechanics testing often include the gravitational moment and the passive elastic moment in addition to the moment caused by muscle contraction. Gravitational moments result from the weight of body segments and dynamometer attachment, whereas passive elastic moments are caused by the passive elastic deformation of tissues crossing the joint being assessed. Gravitational moments are a major potential source of error in dynamometer measurements and must be corrected for, a procedure often called gravity correction. While several approaches to gravity correction have been presented in the literature, they generally assume that the gravitational moment can be adequately modeled as a simple sine or cosine function. With this approach, a single passive data point may be used to specify the model, assuming that passive elastic moments are negligible at that point. A new method is presented here for the gravity correction of dynamometer data. Gravitational moment is represented using a generalized sinusoid, which is fit to passive data obtained over the entire joint range of motion. The model also explicitly accounts for the presence of passive elastic moments. The model was tested for cases of hip flexion-extension, knee flexion-extension, and ankle plantar flexion-dorsiflexion, and provided good fits in all cases.  相似文献   

17.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

18.
Three-dimensional mathematical model analysis of the patellofemoral joint   总被引:1,自引:0,他引:1  
This paper is concerned with a mathematical model analysis of the patellofemoral joint in the human knee, taking into account the articular surface geometry and mechanical properties of the ligament. It was made by the application of a computer-aided design theory (previously studied) and it was possible to express the articular surface geometries in a mathematical formulation and hence elucidate the joint movement mechanics. This method was then applied to a three-dimensional geometrical model of the patellofemoral joint. For the modelling of tendofemoral contact at large angles of knee flexion, the geodestic line theory was adopted. Applying the Newton-Raphson method and the Runge-Kutta Gil method to the model, variables such as patellar attitudes, patellofemoral contact force and tensile force of the patellar ligament for various knee flexion angles were computed. Applying the Hertzian elastic theory, contact stress was also computed. These results showed good agreement with the previously reported experimental results. As an application for the model, some parameter analyses were performed in terms of the contact stress variations and compared with those of the normal knee. The simulation results indicated that both the Q-angle increase and decrease increased contact stress, the patella alta showed undulating variations of stress while the patella infera showed little change of stress, and the tibial tuberositas elevation showed 20-30% reduction of stress.  相似文献   

19.
Many habitual human jaw movements are non-symmetrical. Generally, it is observed that when the lower incisors move to one side the contralateral condyle moves forwards onto the articular eminence, whereas the ipsilateral condyle stays in the mandibular fossa, moving slightly to the ipsilateral side. These jaw movements are the result of contractions of active masticatory muscles and guided by the temporomandibular joints, their ligaments and passive elastic properties of the muscles. It is not known whether the movements are primarily dependent on passive guidance, active muscle control or both. Therefore, the objective of this study was to analyse the interplay between these factors during non-symmetrical jaw movements. A six-degrees-of-freedom dynamical biomechanical model of the human masticatory system was used. The movements were not restricted to a priori defined joint axes. Jaw movement simulations were performed by unilateral activity of the muscles. The ligaments or the passive elastic properties of the muscles could be removed during these simulations. Laterodeviations conform to naturally observed ones could be generated by unilateral muscle contractions. The movement of the lower incisors was hardly affected by the absence of passive elastic muscle properties or temporomandibular ligaments. The latter, however, influenced the movement of the condyles. The movements could be understood by analysing the combination of forces and torques with respect to the centre of gravity of the lower jaw. In addition, the loading of the condyles appeared to be an important determinant for the movement. This analysis emphasizes that the movements of the jaw are primarily dependent on the orientation of the contributing muscles with respect to this centre of gravity and not on the temporomandibular ligaments or passive elastic muscle properties.  相似文献   

20.
The purpose of this study is to investigate the effect of anterior portion of anterior cruciate ligament, posterior cruciate ligament, anterior and deep portions of medial collateral ligament and the tibio-femoral articular contacts on passive knee motion. A well-accepted reference model for a normal tibio-femoral joint is reconstructed from the literature. The proposed three-dimensional dynamic tibio-femoral model includes the isometric fascicles, ligament bundles and irregularly shaped medial-lateral contact surfaces. With the approach we aim to analyze bone shape and ligament related abnormalities of knee kinematics. The rotations, translations and the contact forces during passive knee flexion were compared against a reference model and the results were found in close accordance. This study demonstrated that isometric ligament bundles play an important role in understanding the femur shape from contact points on tibia. Femoral condyles are not necessarily spherical. The surgical treatments should consider both ligament bundle lengths and contact surface geometries to achieve a problem free knee kinematics after a knee surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号