首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of carbon monoxide (CO) on the regional cerebral blood flow was studied by exposing lightly anesthetized rats for 30 min to 0.5, 1.0, 1.5, and 2.0% CO gas mixtures. Cortical cerebral blood flow (CBF) increases of near 200%, 300%, and 400% control were observed at 0.5, 1.0, and 1.5% CO, respectively; whereas at 2.0% CO a reversal of the CBF increase was observed with values declining to near 300% control. The CBF response of subcortical, cerebellar, and brain stem areas was quantitatively similar to that of cortex, indicating that the CBF changes in CO intoxication are general. The decrease in CBF at 2.0% CO was related to significant decreases in arterial CO2 tension. Comparison of the CBF data to previous metabolic results in CO poisoning suggests that the CBF increases are a principal factor in the maintenance of an intact energy state in CO poisoning.  相似文献   

2.
1. Perfusion of livers with whole blood containing carboxyhaemoglobin decreased hepatic O(2) consumption and triglyceride secretion and raised free fatty acid oxidation. 2. Perfusion with [(14)C]carboxyhaemoglobin indicated that there was negligible hepatic uptake of (14)CO. 3. The observations appear to be due to a decrease in O(2) consumption rather than to specific effects of carboxyhaemoglobin.  相似文献   

3.
The effects of 1-h exposure to hypercapnia (PaCO2, 90-110 MMHg) on cerebral indole amine metabolism were studied in rats by measurement of cerebral hemisphere contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), 5-HIAA content was increased after 1-h exposure to hypercapnia, whereas tryptophan, 5-HTP, and 5-HT remained unchanged from control. The accumulation of 5-HTP after decarboxylase inhibition with 3-hydroxybenzyl hydrazine was increased in hypercapnic rats and indicated an increased activity of tryptophan hydroxylase. During the 1-h exposure to hypercapnia there was increased accumulation of 5-HT after monoamine oxidase inhibition with pargyline and increased accumulation of 5-HIAA arter probenecid. The results indicate an increased synthesis and degradation of indole amines in acute hypercapnia.  相似文献   

4.
5.
This article describes methods and experimental paradigms used in combination with the rat hippocampal slice preparation in an attempt to better understand cerebral energy metabolism under the following conditions: normal resting conditions, conditions of oxygen and/or glucose deprivation, and conditions of activation (excitation). The outcome of this attempt, as described herewith, demonstrates the unmatched usefulness of the brain slice preparation as an in vitro tool in the field of neuroscience.  相似文献   

6.
Rat brain was exposed to 591-MHz, continuous-wave (CW) microwaves at 13.8 or 5.0 mW/cm2 to determine the effect on nicotinamide adenine dinucleotide, reduced (NADH), adenosine triphosphate (ATP) and creatine phosphate (CP) levels. On initiation of the in vivo microwave exposures, fluorimetrically determined NADH rapidly increased to a maximum of 4.0%–12.5% above pre-exposure control levels at one-half minute, then decreased slowly to 2% above control at three minutes, finally increasing slowly to 5% above control level at five minutes. ATP and CP assays were performed on sham- and microwave-exposed brain at each exposure time. At 13.8 mW/cm2, brain CP level was decreased an average of 39.4%, 41.1%, 18.2%, 13.1%, and 36.4% of control at exposure points one-half, one, two three, and five minutes, respectively, and brain ATP concentration was decreased an average of 25.2%, 15.2%, 17.8%, 7.4%, and 11.2% of control at the corresponding exposure periods. ATP and CP levels of rat brain exposed to 591-MHz cw microwaves at 5 mW/cm2 for one-half and one minute were decreased significantly below control levels at these exposure times, but were not significantly different from the 13.8 mW/cm2 exposures. For all exposures, rectal temperature remained constant. Heat loss through the skull aperture caused brain temperature to decrease during the five-minute exposures. This decrease was the same in magnitude for experimental and control subjects. Changes in NADH, ATP, and CP levels during microwave exposure cannot be attributed to general tissue hyperthermia. The data support the hypothesis that microwave exposure inhibits mitochondrial electron transport chain function, which results in decreased ATP and CP levels in brain.  相似文献   

7.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

8.
Carbon monoxide (CO) is known to increase cerebral blood flow, but the effect of CO on the vascular tone of large cerebral arteries is uncertain. We tested whether CO affects cerebral artery tone by measuring tension generated by ex vivo segments of dog basilar artery upon exposure to CO. In cerebral artery segments contracted with either KCl or prostaglandin F(2alpha), CO caused a concentration-related relaxation beginning with a concentration of 57 microM. Relaxation did not occur if CO was administered in the presence of bubbling carboxygen (95% O(2):5% CO(2)), which reduces greater than 99% of CO from the solution. Furthermore, the CO-induced relaxation of cerebral artery segments was reduced in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM)or the potassium channel blocker tetraethylammonium (TEA, 1 mM). Neither ODQ nor TEA completely eliminated the relaxation caused by CO and there was no additive effect if ODQ and TEA were administered together. These results suggest that cerebral arteries are directly relaxed by CO and that this relaxation depends upon the activation of guanylyl cyclase and the opening of potassium channels.  相似文献   

9.
10.
Cerebrocortical b-cytochromes have been found to be sensitive to reduction in the presence of CO and O2 in vivo. CO-mediated cytochrome b reduction responses in "bloodless" rats were correlated in this study with changes in concentrations of high energy and glycolytic intermediates measured in cortex after rapid brain freezing. Cytochrome redox state and metabolite concentrations also were compared with cerebral blood flow (CBF) and cerebral metabolic rate for O2 (CMRo2) measured before and after CO administration. No definite biochemical evidence of energy limitation was found in parietal cortex after the fluorocarbon-for-blood exchange; however, CO had direct effects on brain metabolite concentrations. Fifteen-minute CO exposures at inspired CO/O2 of 0.003-0.06 increased cerebrocortical phosphocreatine and ADP and decreased creatine concentration. CO exposure produced no significant changes in either ATP concentration or CMRo2, although CBF increased slightly. These findings may be interpreted to indicate that CO binding to cytochrome aa3 at low CO/O2 in vivo increases extramitochondrial pH relative to that within the mitochondrial matrix. In the process, cytochrome b reduction levels increase, possibly signaling an increased efficiency of oxidative phosphorylation relative to O2 uptake by unblocked respiratory chains.  相似文献   

11.
Cardiac output function curves were used to investigate the effects of carbon monoxide on the heart in the conscious dog. Each dog was briefly exposed to 1,500 ppm carbon monoxide through a permanent tracheostomy. Immediately upon attaining either 10%, 20%, or 30% HbCO a rapid infusion of Ringer's lactate was given to test cardiac capabilities. The combined effects of carbon monoxide and infusion produced significant increases in cardiac output, heart rate, mean left ventricular pressure, dP/dt and (dP/dt)/IP. Cardiac output was sufficient to prevent peripheral hypoxia at all HbCO levels; however, there was evidence of impending cardiac depression beginning at 20% HbCO.  相似文献   

12.
The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effect of temperature on adenosine triphosphate concentration [ATP] and creatine phosphate concentration [CP] was determined in the brains of rats that were maintained at 35.6, 37.0, 39.0, and 41.0 degrees C. At 37, 39, and 41 degrees C brain [ATP] and [CP] were down 6.0, 10.8, and 29.2%, and 19.6, 28.7, and 44%, respectively, from the 35.6 degrees C control concentrations. Exposure of the brain to 591-MHz radiation at 13.8 mW/cm2 for 0.5, 1.0, 3.0, and 5.0 min caused further decreases (below those observed for 30 degrees C hyperthermia only) of 16.0, 29.8, 22.5, and 12.3% in brain [ATP], and of 15.6, 25.1, 21.4, and 25.9% in brain [CP] after 0.5, 1.0, 3.0, and 5.0 min, respectively. Recording of brain reduced nicotinamide adenine dinucleotide (NADH) fluorescence before, during, and after microwave exposure showed an increase in NADH fluorescence during microwave exposure that returned to preexposure levels within 1 min postexposure. Continuous recording of brain temperatures during microwave exposures showed that brain temperature varied between -0.1 and +0.05 degrees C. Since the microwave exposures did not induce tissue hyperthermia, it is concluded that direct microwave interaction at the subcellular level is responsible for the observed decrease in [ATP] and [CP].  相似文献   

13.
Acute ammonia intoxication leads to rapid death, which is prevented by blocking N -methyl- d -aspartate (NMDA) receptors. The subsequent mechanisms leading to death remain unclear. Brain edema seems an important step. The aim of this work was to study the effects of acute ammonia intoxication on different cerebral parameters in vivo using magnetic resonance and to assess which effects are mediated by NMDA receptors activation. To assess edema induction, we injected rats with ammonium acetate and measured apparent diffusion coefficient (ADC) in 16 brain areas. We also analyzed the effects on T1, T2, and T2* maps and whether these effects are prevented by blocking NMDA receptors. The effects of acute ammonia intoxication are different in different brain areas. T1 relaxation time is reduced in eight areas. T2 relaxation time is reduced only in ventral thalamus and globus pallidus. ADC values increased in hippocampus, caudate-putamen, substantia nigra and cerebellar cortex, reflecting vasogenic edema. ADC decreased in hypothalamus, reflecting cytotoxic edema. Myo-inositol increased in cerebellum and substantia nigra, reflecting vasogenic edema. N -acetyl-aspartate decreased in cerebellum, reflecting neuronal damage. Changes in N -acetyl-aspartate, T1 and T2 are prevented by blocking NMDA receptors with MK-801 while changes in ADC or myo-inositol (induction of edema) are not.  相似文献   

14.
The effect of acute CS2 exposure on the rat brain protein metabolism was studied with control and phenobarbitone pretreated adult male rats 1, 4 and 46 h after exposure. Increased activity of acid proteinase was detected in both test groups 1 and 4 h after exposure and it was accompanied by changes in 14C-labelled leucine turnover as well as in RNA content. The changes were more conspicuous in cerebellum than in brain in both test groups while phenobarbitone pretreatment modified the brain response towards intoxication. This modification probably represents inherent effects of barbiturate on brain protein metabolism as well as altered metabolism of CS2.The activities of creatine kinase and nonspecific cholinesterase displayed only subtle changes as assayed in cerebral homogenate and serum. Thus a single acute CS2 intoxication apparently causes definitive transient changes in brain protein metabolism; serum enzyme determinations may not reflect the magnitude of these changes.  相似文献   

15.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

16.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

17.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

18.
Microbial metabolism of carbon monoxide in culture and in soil.   总被引:9,自引:7,他引:2       下载免费PDF全文
Nocardia salmonicolor readily oxidized CO to CO2. Slight activity was found among species of Actinoplanes, Agromyces, Microbispora, Mycobacterium, and other nocardias, and no oxidation was detected in the algae, fungi, and other bacteria tested. Carbon monoxide was oxidized rapidly to CO2 in the dark in two soils incubated in air or under flooded conditions, but little of the 14C from 14CO was incorporated into the organic fraction of these soils. The reaction was microbial because appreciable CO was not converted to CO2 in autoclaved or gamma-irradiated soil. Heating the soil for 25 min at 70 degrees C destroyed its CO-oxidizing activity. The incorporation of 14CO2 into the cells of microorganisms in soil and soil suspension was not enhanced by incubating the samples in the presence of CO, suggesting that CO oxidation was not the result of autotrophic metabolism. The oxidation of 17 mu 1 of CO per liter in the head space was nearly complete in 6 h in soil incubated in air or anaerobically.  相似文献   

19.
Nocardia salmonicolor readily oxidized CO to CO2. Slight activity was found among species of Actinoplanes, Agromyces, Microbispora, Mycobacterium, and other nocardias, and no oxidation was detected in the algae, fungi, and other bacteria tested. Carbon monoxide was oxidized rapidly to CO2 in the dark in two soils incubated in air or under flooded conditions, but little of the 14C from 14CO was incorporated into the organic fraction of these soils. The reaction was microbial because appreciable CO was not converted to CO2 in autoclaved or gamma-irradiated soil. Heating the soil for 25 min at 70 degrees C destroyed its CO-oxidizing activity. The incorporation of 14CO2 into the cells of microorganisms in soil and soil suspension was not enhanced by incubating the samples in the presence of CO, suggesting that CO oxidation was not the result of autotrophic metabolism. The oxidation of 17 mu 1 of CO per liter in the head space was nearly complete in 6 h in soil incubated in air or anaerobically.  相似文献   

20.
Growth of Seliberia carboxydohydrogena was inhibited by CO at 10 to 40% (v/v), resulting in increased substrate utilization and enhanced synthesis of cytochromes and cyclopropane and saturated fatty acids. The bacteria showed increased formation of new membrane structures, with pronounced folding of their cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号