首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoselective, Rio(SE), biselective, Rio(i,j), and nonselective proton spin-lattice relaxation rates have been measured for dilute solutions of gramicidin S in dimethyl sulfoxide and used to evaluate cross-relaxation rates (sigma ij = Rio(i,j)-Rio(SE)) and Fi ratios (Fi = Ri(NS)/Rio(SE)). The cross-relaxation parameters, sigma, and Fi ratios measured for backbone gramicidin S protons predict that the same correlation time, tau c = 1.2 X 10(-9)s, modulates all the dipolar proton-proton interactions and that these interactions represent the main source for the proton spin-lattice relaxation process. The larger relaxation rates for amide versus alpha-protons of the backbone are attributed to dipolar relaxation between 14N and its directly bonded protons and is an approximate measure of the extent of this. The intrabackbone proton-proton distances, evaluated from sigma values, were consistent with the antiparallel beta-plated sheet/beta II'-turn conformation previously proposed for gramicidin S in solution.  相似文献   

2.
Enzyme I of the bacterial phosphotransferase system can exist in a monomer/dimer equilibrium which may have functional significance. Each monomer contains two tryptophan residues. It is demonstrated that the decay of both the monomer and the dimer can be described by a biexponential. The decay times depend on the temperature and at 6 degrees C the decay times are tau 1 = 0.4 ns and tau 2 = 3.2 ns for the monomer and tau 3 = 3.2 ns and tau 4 = 7.2 ns for the dimer form of the enzyme. The changes in the fluorescence decay parameters can be utilized to measure the equilibrium constant for the monomer/dimer transition.  相似文献   

3.
Roberts MF  Cui Q  Turner CJ  Case DA  Redfield AG 《Biochemistry》2004,43(12):3637-3650
Phosphorus-spin longitudinal relaxation rates of the DNA duplex octamer [d(GGAATTCC)](2) have been measured from 0.1 to 17.6 T by means of conventional and new field-cycling NMR methods. The high-resolution field-cycling method is identical to a conventional relaxation experiment, except that after preparation the sample is moved pneumatically from its usual position at the center of the high-resolution magnet upward to a lower field above its normal position and then returned to the center for readout after it has relaxed for the programmed relaxation delay at the low field. This is the first measurement of all longitudinal relaxation rates R(1) of a nuclear species in a macromolecule over virtually the entire accessible magnetic field range. For detailed analysis, three magnetic field regions can be delineated: (i) dipolar relaxation dominates at fields below 2 T, (ii) chemical shift anisotropy (CSA) relaxation is roughly constant from 2 to 6 T, and (iii) a square-law increasing dependence is seen at fields higher than approximately 6 T due to internal motion CSA relaxation. The analysis provides a rotational correlation time (tau(r) = 4.1 +/- 0.3 ns) for the duplex at both 1.5 and 0.25 mM concentrations (of duplex) at 22 degrees C. For comparison, extraction of tau(r) in the conventional way from the ratio of T(1)/T(2) at 14 T yields 3.2 ns. The tau(r) discrepancy disappears when we exclude the contribution of internal motion from the R(1) in the ratio. The low-field dipolar relaxation provides a weighted inverse sixth power sum of the distances from the phosphorus to the protons responsible for relaxation. This average is similar for all phosphates in the octamer and similar to that in previous B-DNA structures (its inverse sixth root is about 2.40 A for two different concentrations of octamer). The CSA relaxation at intermediate field provides an estimate of the order parameter squared, S(c)(2), for each phosphorus. S(c)(2) is about 0.7-1, clearly different for different phosphate linkages in the octamer duplex. The increasing R(1) at high fields reflects CSA relaxation due to internal motions, for which a correlation time, tau(hf), can be approximately extracted with the aid of additional measurements at 14.0 and 17.6 T. We conclude that tau(hf) values are relatively large, in the range of about 150 ps. Insight into the motions leading to this correlation time was gained by a 28 ns molecular dynamics simulation of the molecule. S(2) and tau(s) (corresponding to tau(hf)) predicted by this simulation were in good agreement with the experimental values from the field-cycling data. Both the effect of Mg(2+) on the dynamic parameters extracted from (31)P relaxation rates and the field dependence of relaxation rates for several protons of the octamer were measured. High-resolution field cycling opens up the possibility of monitoring residue-specific dipolar interactions and dynamics for the phosphorus nuclei of diverse oligonucleotides.  相似文献   

4.
Structural and kinetic features of the Mn(II)-Leu-enkephalin binding equilibria were delineated by measuring 13C and 1H NMR spin-lattice relaxation rates. The temperature dependence of such rates showed that some carbons were experiencing slow exchange regimes such that kinetic parameters at room temperature could be calculated (k(off) = 1400 sec-1, delta H* = 12.0 kcal/mol, delta S* = -9.9 e.u.). The paramagnetic rates of fast exchanging carbons were interpreted by the Solomon-Bloembergen-Morgan theory to provide structural parameters. The terminal carboxyl and amino groups were shown to be the binding sites. The motional correlation time (tau c = 0.6 nsec at 298 K) was calculated by measuring selective and double-selective 1H spin-lattice relaxation rates for the free peptide. The number of coordinated ligands was evaluated by considering the distance of the Leu CO in the complex at 2.54 A, as shown by molecular models. Finally, carbon-Mn(II) distances were calculated and the molecular model of the 1:1 complex was built.  相似文献   

5.
Measurements of rapid hydrogen exchange (HX) of water with protein amide sites contain valuable information on protein structure and function, but current NMR methods for measuring HX rates are limited in their applicability to large protein systems. An alternate method for measuring rapid HX is presented that is well-suited for larger proteins, and we apply the method to the deuterated, homodimeric 36 kDa HIV-1 integrase catalytic core domain (CCD). Using long mixing times for water-amide magnetization exchange at multiple pH values, HX rates spanning more than four orders of magnitude were measured, as well as NOE cross-relaxation rates to nearby exchangeable protons. HX protection factors for the CCD are found to be large (>10(4)) for residues along the dimer interface, but much smaller in many other regions. Notably, the catalytic helix (residues 152-167) exhibits low HX protection at both ends, indicative of fraying at both termini as opposed to just the N-terminal end, as originally thought. Residues in the LEDGF/p75 binding pocket also show marginal stability, with protection factors in the 10-100 range (~1.4-2.7 kcal/mol). Additionally, elevated NOE cross-relaxation rates are identified and, as expected, correspond to proximity of the amide proton to a rapidly exchanging proton, typically from an OH side chain. Indirect NOE transfer between H(2) O and the amide proton of I141, a residue in the partially disordered active site of the enzyme, suggests its proximity to the side chain of S147, an interaction seen in the DNA-bound form for a homologous integrase.  相似文献   

6.
Summary A recent 1H NMR method has been applied to the determination of the solution structure and internal dynamics of a synthetic mixed C/O trisaccharide related to sialyl Lewisx. Varying the rf field offset in ROESY-type experiments enabled the measurement of longitudinal and transverse dipolar cross-relaxation rates with high accuracy. Assuming that for each proton pair the motion could be represented by a single exponential autocorrelation function, it was possible to derive geometrical parameters (r) and dynamic parameters cp. With this assumption, 224 cross-relaxation rates have been transformed into 30 interproton distance constraints and 30 dipolar correlation times. The distance constraints have been used in a simulated-annealing procedure. This trisaccharide exhibits a structure close to the O-glycosidic analogue, but its flexibility seems highly reduced. On the basis of the determined structure and dynamics, it is shown that no conformational exchange occurs, the molecule existing in the form of a unique family in aqueous solution. In order to assess the quality of the resulting structures and to validate this new experimental procedure of distance extraction, we finally compare these solution structures to the ones obtained using three different sets of distances deduced from three choices of internal reference. It appears that this procedure allows the determination of the most precise and accurate solution.Abbreviations COSY correlation spectroscopy - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy; rmsd, root-mean-square deviation - ROESY rotating frame Overhauser enhancement spectroscopy - SLex sialyl Lewisx - TOCSY total correlation spectroscopy  相似文献   

7.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

8.
Rodin VV  Knight DP 《Biofizika》2004,49(5):800-808
The molecular mobility of water in fibres of natural silk (Bombyx mori) was studied by the double-quantum-filtered (DQF) and single-pulse 1H NMR techniques. The results obtained showed a slow motion of water molecules and their strong interaction with silk macromolecules. At different model functions for resonance lineshape in 1H NMR spectra, the influence of signal linewidth on the estimation of relaxation times and cross-relaxation parameters was considered. The observed 1H DQF NMR signal in B. mori silk fibres (BC = 0.065) indicated a local order and anisotropic motion of water molecules, which leads to 1H-1H dipolar interactions in natural silk fibers due to the creation of the second-rank tensors (T(2,+1), T(2,-1)). DQF spectra were the difference of two Lorentzians with different linewidths and were analyzed using the theory of 1H DQF NMR and the data on residual dipolar interactions in systems with the anisotropic mobility of water molecules. The residual dipolar interactions was insignificant and, as the humidity increased (0.18), no DQF-signals and residual dipolar interactions were observed.  相似文献   

9.
The solution structures of a trisaccharide and a pentasaccharide containing the Lewis(x) motif were determined by two independent approaches using either dipolar cross-relaxation (NOE) or residual dipolar coupling (RDC) data. For the latter, one-bond 13C[bond](1)H RDC enhanced by two different mineral liquid crystals were used alone. Home-written programs were employed firstly for measuring accurately the coupling constants in the direct dimension of non-decoupled HSQC experiments, secondly for transforming each RDC data set into geometrical restraints. In this second program, the complete molecular structure was expressed in a unique frame where the alignment tensor is diagonal. Assuming that the pyranose rings are rigid, their relative orientation is defined by optimizing the glycosidic torsion angles. For the trisaccharide, a good agreement was observed between the results of both approaches (NOE and RDC). In contrast, for the pentasaccharide, strong discrepancies appeared, which seem to result from interactions between the pentasaccharide and the mesogens, affecting conformational equilibrium. This observation is of importance, as it reveals that using simultaneously NOE and RDC can be hazardous as the former represent 99% of the molecules free in solution, whereas the latter correspond to less than 1% of the structure bound to the mesogen.  相似文献   

10.
Membranes of human splenocytes were hydrolyzed by papain and extracellular portions of class I and class II HLA antigen molecules were isolated by monoclonal antibodies fixed on Sepharose 4B. The isolated proteins were spin-labeled by TEMPO-dichlorotriazine and the values of rotational correlation times (tau) of labeled proteins were found using dependencies of ESR spectra parameters vs viscosity at constant temperature. The tau-values were equal to 8 ns for class I molecules and 14 ns for class II molecules. These values are 2-3 times lower than predicted for a rigid ellipsoid with mol wt. 50 kDa (about 20 ns). This fact suggests the existence of flexibility of HLA molecules which seems to be important for their biological activity. In this respect extracellular portions of HLA antigen molecules resemble flexible Fc fragments (tau = 12 ns) and differ from rigid Fab fragments (tau = 20 ns) of immunoglobulins G. The values of tau of spin-labeled proteins adsorbed from membrane hydrolysates on IgG-column was equal to 6.5 ns. The proteins adsorbed on lentil lectin column (after isolation of HLA proteins) have the tau-values equal to 9 ns.  相似文献   

11.
The motional dynamics of lens cytoplasmic proteins present in calf lens homogenates were investigated by two 13C nuclear magnetic resonance (NMR) techniques sensitive to molecular motion to further define the organizational differences between the cortex and nucleus. For the study of intermediate (mobile) protein rotational reorientation motion time scales [rotational correlation time (tau 0) range of 1-500 ns], we employed 13C off-resonance rotating frame spin-lattice relaxation, whereas for the study of slow (solidlike) motions (tau 0 greater than or equal to 10 microseconds) we used the solid-state NMR techniques of dipolar decoupling and cross-polarization. The frequency dependence of the peptide bond carbonyl off-resonance rotating frame spectral intensity ratio of the lens proteins present in native calf nuclear homogenate (42% protein) at 35 degrees C indicates the presence of a polydisperse mobile protein fraction with a tau 0,eff (mean) value of 57 ns. This mean value is consistent with the average value calculated from the known water-soluble nuclear lens protein polydispersity assuming a cytoplasmic viscosity 3 times that of pure water. Lowering the temperature to 1 degree C, a temperature which produces the cold cataract, results in an overall decrease in tau 0,eff to 43 ns, suggesting a selective removal of beta H-, LM-, and possibly gamma s-crystallins from the mobile lens protein population. The presence of solidlike or motionally restricted protein species was established by dipolar decoupling and cross-polarization. The fraction of motionally restricted protein in the nuclear region varied from 0.35 to 0.45 in the temperature range of 35-1 degree C. For native cortical homogenate (25% protein), the off-resonances rotating frame spectral intensity ratio frequency-dependent curves for the protein carbonyl resonance yielded tau 0,eff values of 34 and 80 ns at 35 and 1 degree C, respectively. Both values were reconciled with the known lens cortex soluble protein polydispersity using an assumed cytoplasmic viscosity 1.5 times that of pure water at the same temperature. Comparison of proton dipolar-decoupled and nondecoupled 13C NMR spectra of native cortical homogenate at 20 degrees C indicates the absence of significant contributions from slowly tumbling, motionally restricted species. This interpretation was confirmed by the failure to detect significant lens protein 13C-1H cross-polarization at this temperature. However, at 1 degree C, the fraction of solidlike protein was 0.15. Concentrated cortical homogenates at 20 degrees C (42% protein), by contrast, gave cross-polarization spectra with maximum absolute signal intensities 50-70% of native nuclear homogenates, but with similar magnetization parameters...  相似文献   

12.
Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant Asn51 residue, seen in all known homeodomain/DNA structures, is critical for binding affinity and specificity.  相似文献   

13.
Tryptophan fluorescence lifetimes were analyzed for three proteins: human serum albumin, bovine serum albumin, and bacterial luciferase, which contain one, two, and seven tryptophan residues, respectively. For all of the proteins, the fluorescence decays were fitted by three lifetimes: τ1 = 6–7 ns, τ2 = 2.0–2.3 ns, and τ3 ≤ 0.1 ns (the native state), and τ1 = 4.4–4.6 ns, τ2 = 1.7–1.8 ns, and τ3 ≤ 0.1 ns (the denatured state). Corresponding decay-associated spectra had similar peak wavelengths and spectrum half-widths both in the native state (\(\lambda _{\max }^{{\tau _1}} = 324nm\), \(\lambda _{\max }^{{\tau _2}} = 328nm\), and \(\lambda _{\max }^{{\tau _3}} = 315nm\)), and in the denatured state (\(\lambda _{\max }^{{\tau _1}} = 350nm\), \(\lambda _{\max }^{{\tau _2}} = 343nm\), and \(\lambda _{\max }^{{\tau _3}} = 317nm\)). The differences in the steady-state spectra of the studied proteins were accounted for the individual ratio of the lifetime component contributions. The lifetime components were compared with a classification of tryptophan residues in the structure of these proteins within the discrete states model.  相似文献   

14.
Numerous investigations on the primary events of the bacteriorhodopsin photocycle indicate that the first steps of the energy transformation process take place in the 500 fs-5 ps region. These processes are known to be followed by others in the μs and ms regions. Recent observations indicate also the existence of nanosecond intermediate(s). Here we are reporting on direct measurements of the light-induced electric response signal of purple membrane carried out in the ps and ns regions. The laser flash-induced electric response of dried oriented purple membrane samples were detected by an ultrafast sampling oscilloscope. The measured kinetic curves were analyzed by exponential fitting and by a simulation-optimization method taking into account the time characteristics of the measuring setup. This analysis revealed a two phase real charge separation process. The first phase (tau = 21 ± 2 ps) coincides well with the overall bR-[unk] K transition. The second phase (tau = 6 ± 0.5 ns) can be correlated with the nanosecond optical transitions reported by several workers, or may be an optically silent charge movement inside the protein moiety or on the surface of the membrane.  相似文献   

15.
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.  相似文献   

16.
The analogs P-pyridoxyl-L-alanine and P-pyridoxyl-L-homoserine bind to the apoprotein of the enzyme cystathionase and inhibit the reactivation of enzymatic activity after addition of pyridoxyl-5-P. The binding of the inhibitors was monitored by measuring the fluorescence emitted by the P-pyridoxyl moiety at 395 nm (excitation 325 nm). The fluorometric titration results indicate the presence of nonequivalent binding sites in the apoprotein. A model based on two classes of independent binding sites fits the fluorometric data reasonably well. The presence of nonequivalent fluorescent sites in reduced cystathionase was also detected by nanosecond spectroscopy. In contrast to the model compound P-pyridoxyl-epsilon-lysine (tau equals 2.6 ns), the P-pyridoxyl residues of cystathionase display multiexponential fluorescence decay. Two fluorescence lifetimes (tau2 equals 4.1 ns and tau2 equals 15 ns) fit the deconvoluted decay results obtained by pulse fluorimetry. It is proposed that the P-pyridoxyl chromophores of reduced cystathionase have different environments.  相似文献   

17.
Characterization of the internal environment of a sol-gel matrix is an important area of investigation in optical biosensors. In the present study, different sol-gel compositions were prepared by varying the water (H2O) to tetraethyl-orthosilicate (TEOS) ratio (R) from 1 to 16 and the changes in the internal environment of the sol-gel both in bulk and thin films as a function of aging (storage) were investigated using fluorescence spectroscopy. We focussed on the fluorescence characteristics , viz. emission and excited state lifetime of Hoechst 33258 (H258), a bisbenzimidazole derivative, which was used as fluorescence probe entrapped in the TEOS derived sol-gel bulk and thin films. These sols were prepared at a low pH (approximately 2.0) and the thin films were coated by dip coating technique at withdrawal speeds of 1 cm/min and 0.1cm/min. Usually, uniform thin films were obtained at a high speed (1 cm/min) and partially cracked film at a low speed (0.1 cm/min) as observed by fluorescence microscope. These observations did not change during aging. On the contrary, three months long observations on steady-state fluorescence emission measurements on H258 depicted a blue shift from 535 nm to 508 nm at R = 1 in the sol-gel bulk, whereas at higher ratios this was not prominent. At all ratios, dual emission bands were observed in thin films. This may be due to faster sol-gel to xerogel transition during aging depending on the ratio (R). Analysis of the excited state decay profiles of H258 revealed a double exponential fitting having a short (tau1) and a long (tau2) component in both fresh and during aging, in the sol-gel bulk and thin films, indicating heterogeneity in the internal environment. The value of tau1 increased from 0.4 ns to 1.2 ns whereas tau2 attained a value from 3.0 ns to 3.6 ns at R = 1 upon aging in the sol-gel bulk. The corresponding values of tau1 and tau2 in thin films were 0.3 ns and 3.5 ns, respectively. The values of these decay components in thin films did not alter much due to storage, but their relative contributions showed more systematic changes in the thin films. The observed changes could be correlated to rigidification in the bulk depending on the ratio (R). This process was very slow at R > or = 4. The heterogeneity in the internal environment of bulk and thin films upon aging appeared to be different as revealed from analysis of excited-state lifetime. Thus, the bisbenzimidazole derivative H258 appears to be very useful probe for characterizing the internal environment of both the sol-gel bulk and thin films.  相似文献   

18.
We report the use of electrospray ionization (ESI) mass spectrometry (MS) in conjunction with online rapid mixing to monitor the kinetics of acid-induced ferrihemoglobin denaturation. Under equilibrium conditions, the hemoglobin mass spectrum is dominated by the intact heterotetramer. Dimeric and monomeric species are also observed at lower intensities. In addition, ionic signals corresponding to hexameric (tetramer-dimer) and octameric (tetramer x 2) hemoglobin species are observed. These complexes may represent weak solution-phase assemblies. The acid-induced denaturation process was monitored for reaction time ranging from 9 ms to approximately 3 s. The data obtained were subjected to a global analysis procedure which simultaneously fit all kinetic (ESI-MS intensity vs time) profiles to multiexponential expressions. Results of the global analysis are consistent with the coexistence of two subpopulations of tetrameric hemoglobin which differ in their disassembly rates and ESI charge states. The higher-charge state tetramer ions preferentially dissociate via a rapid pathway (tau(1) = 51 ms), resulting in the transient formation of a heme-saturated dimer, holo-alpha-globin, and a heme-deficient dimer. The latter is shown by MS/MS to be comprised of a heme-bound alpha-subunit complexed with an apo-beta-chain. The slow-decaying tetramer population, apparent at a slightly lower average charge state, breaks down into its monomeric constituents with no observable intermediate species (tau(2) = 390 ms). Surprisingly, unfolded apo-alpha-globin is formed more rapidly than unfolded apo-beta-globin. The appearance of the latter occurs with a relaxation time tau(3) of 1.2 s. It is postulated that accumulation of unfolded apo-beta-globin is delayed by transient population of an undetected unfolding intermediate.  相似文献   

19.
Using multifrequency phase/modulation fluorometry, we have studied the fluorescence decay of the single tryptophan residue of ribonuclease T1 (RNase T1). At neutral pH (7.4) we find that the decay is a double exponential (tau 1 = 3.74 ns, tau 2 = 1.06 ns, f1 = 0.945), in agreement with results from pulsed fluorometry. At pH 5.5 the decay is well described by a single decay time (tau = 3.8 ns). Alternatively, we have fitted the frequency domain data by a distribution of lifetimes. Temperature dependence studies were performed. If analyzed via a double exponential model, the activation energy for the inverse of the short lifetime component (at pH 7.4) is found to be 3.6 kcal/mol, as compared with a value of 1.0 kcal/mol for the activation energy of the inverse of the long lifetime component. If analyzed via the distribution model, the width of the distribution is found to increase at higher temperature. We have also repeated, using lifetime measurements, the temperature dependence of the acrylamide quenching of the fluorescence of RNase T1 at pH 5.5. We find an activation energy of 8 kcal/mol for acrylamide quenching, in agreement with our earlier report.  相似文献   

20.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号