共查询到20条相似文献,搜索用时 8 毫秒
1.
Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in a clonal osteoblast-like rat osteogenic sarcoma cell line 总被引:1,自引:0,他引:1
T Matsumoto Y Kawanobe K Morita E Ogata 《The Journal of biological chemistry》1985,260(25):13704-13709
The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on phospholipid metabolism was examined in clonal rat osteogenic sarcoma cells, UMR 106, of osteoblastic phenotype. Treatment of UMR 106 cells with 10(-8)M 1,25-(OH)2D3 for 48 h caused an increase in [14C]serine incorporation into phosphatidylserine (PS) and a decrease in [3H]ethanolamine, [3H]linositol, and [14C]choline incorporation into phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylcholine, respectively; the decrease in [3H]ethanolamine incorporation into PE was the largest. The total contents of phospholipids were similarly affected by 10(-8)M 1,25-(OH)2D3 treatment, suggesting that the effects of 1,25-(OH)2D3 are due largely to alterations in the synthesis of these phospholipids. The effects of 1,25-(OH)2D3 were evident at 10(-10) M 1,25-(OH)2D3, and 10(-8)M 1,25-(OH)2D3 caused a maximal stimulation of [14C]PS synthesis (167% of control) and a maximal reduction in the [3H]PE synthesis (41% of control). The [14C]PS/[3H]PE ratio increased gradually and reached a maximum after 70 h of treatment with 10(-8)M 1,25-(OH)2D3. When the cells were cultured in calcium-free medium containing 0.5 mM EGTA or when 5 microM cycloheximide was added to the medium, the effect of 1,25-(OH)2D3 on phospholipid metabolism was almost completely inhibited. Neither 25-hydroxyvitamin D3 nor 24,25-dihydroxyvitamin D3 caused significant changes in phospholipid metabolism. These results suggest that 1,25-(OH)2D3 alters phospholipid metabolism by enhancing PS synthesis through a calcium-dependent stimulation of the base exchange reaction of serine with other phospholipids and that the effect of 1,25-(OH)2D3 requires the synthesis of new proteins. Because PS is thought to be important for apatite formation and bone mineralization by binding calcium and phosphate to form calcium-PS-phosphate complexes, the present data suggest that 1,25-(OH)2D3 may stimulate bone mineralization by a direct effect on osteoblasts, stimulating PS synthesis. 相似文献
2.
3.
4.
The antifungal imidazole, ketoconazole, was tested for effects on 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) metabolism and binding in intact osteoblast-like osteogenic sarcoma cells (UMR-106). Ketoconazole inhibited the C-24 oxidation of 1,25-(OH)2D3 in a dose-dependent manner. Furthermore, inhibition of 1,25-(OH)2D3 metabolism by ketoconazole resulted, after a lag time of 2 h, in a sharp increase of receptor-bound 1,25-(OH)2D3. The data suggest that the self-induced 1,25-(OH)2D3 metabolism may play an important role in controlling the intracellular levels of and, consequently, receptor occupancy by the active form of vitamin D. Furthermore the results are compatible with the existence of a homologous up-regulation of the 1,25-(OH)2D3-receptor. 相似文献
5.
Differential effects of parathyroid hormone and its analogues on cytosolic calcium ion and cAMP levels in cultured rat osteoblast-like cells 总被引:2,自引:0,他引:2
H J Donahue M J Fryer E F Eriksen H Heath 《The Journal of biological chemistry》1988,263(27):13522-13527
While the stimulatory effect of parathyroid hormone (PTH) on osteoblast-like cell adenylate cyclase is well known, the effect of PTH on cytosolic calcium ion ([Ca2+]i) mobilization is controversial, one group finding no effect but others reporting various increases. We investigated the effects on [Ca2+]i of synthetic rat PTH fragment 1-34 (rPTH(1-34)) and two bovine PTH analogues that inhibit PTH's stimulation of adenylate cyclase (bovine 8,18Nle, 34Tyr-PTH(3-34) and 34Tyr-PTH(7-34]. [Ca2+]i was measured before, during, and after exposure to PTH analogues in perifused, attached osteoblast-like rat osteosarcoma cells (ROS 17/2.8) that had been scrape-loaded with the luminescent photoprotein aequorin. Resting [Ca2+]i was 0.094 +/- 0.056 microM (mean +/- S.D., n = 103) and rose in a time- and dose-specific way after exposure to rPTH(1-34). At 10(-10) M rPTH(1-34), [Ca2+]i rose 100% within 30 s to a plateau; higher concentrations of PTH yielded increasing initial peaks of [Ca2+]i followed by lower plateaus. At 10(-6) M, the initial peak was 5-fold basal, or 0.64 +/- 0.07 microM. Both analogues of PTH were at least partial agonists for [Ca2+]i mobilization and did not reduce peak [Ca2+]i when co-perifused with rPTH(1-34). However, the analogues did reduce significantly rPTH(1-34)-induced cAMP accumulation and did not increase cAMP accumulation by themselves. Thus, rPTH(1-34) strongly mobilizes [Ca2+]i in ROS 17/2.8 cells, at near-physiologic concentrations. Failure of the PTH analogues to block the effect of PTH on [Ca2+]i while inhibiting the effect on cAMP accumulation suggests separate pathways for PTH activation of adenylate cyclase and mobilization of calcium. 相似文献
6.
M S Katz G E Gutierrez G R Mundy T K Hymer M P Caulfield R L McKee 《Journal of cellular physiology》1992,153(1):206-213
The effects of the monokines tumor necrosis factor alpha (TNF) and interleukin 1 (IL 1) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TNF and IL 1 incubated with UMR-106 cells for 48 hr each produced concentration-dependent inhibition of PTH-sensitive adenylate cyclase, with maximal inhibition of PTH response (40% for TNF, 24% for IL 1) occurring at 10(-8) M of either monokine. Both monokines also decreased adenylate cyclase stimulation by the tumor-derived PTH-related protein (PTHrP). In contrast, TNF and IL 1 had little or no inhibitory effect on receptor-mediated stimulation of adenylate cyclase by isoproterenol and nonreceptor-mediated enzyme activation by cholera toxin and forskolin; both monokines increased prostaglandin E2 stimulation of adenylate cyclase. Binding of the radioiodinated agonist mono-[125I]-[Nle8,18, Tyr34]bPTH-(1-34)NH2 to UMR-106 cells in the presence of increasing concentrations of unlabeled [Nle8,18, Tyr34]bPTH-(1-34)NH2 revealed a decline in PTH receptor density (Bmax) without change in receptor binding affinity (dissociation constant, Kd) after treatment with TNF or IL 1. Pertussis toxin increased PTH-sensitive adenylate cyclase activity but did not attenuate monokine-induced inhibition of PTH response. In time course studies, brief (1 hr) exposure of cells to TNF or IL 1 during early culture was sufficient to decrease PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. Inhibition of PTH response by monokines was blocked by cycloheximide. The results indicate that TNF and IL 1 impair responsiveness to PTH (and PTHrP) by a time- and protein synthesis-dependent down-regulation of PTH receptors linked to adenylate cyclase. 相似文献
7.
8.
9.
Transforming growth factor beta enhances parathyroid hormone stimulation of adenylate cyclase in clonal osteoblast-like cells 总被引:1,自引:0,他引:1
G E Gutierrez G R Mundy D R Manning E L Hewlett M S Katz 《Journal of cellular physiology》1990,144(3):438-447
The effects of transforming growth factor beta (TGF beta) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Purified TGF beta incubated with UMR-106 cells for 48 hr produced a concentration-dependent increase in PTH stimulation of adenylate cyclase, with maximal increase in PTH response (37%) occurring at 1 ng/ml TGF beta. TGF beta also enhanced receptor-mediated activation of adenylate cyclase by isoproterenol and prostaglandin E2 (PGE2) and nonreceptor-mediated enzyme activation by cholera toxin and forskolin. In cells in which PTH-stimulated adenylate cyclase activity was augmented by treatment with pertussis toxin, the incremental increase in PTH response produced by TGF beta was reduced by 33%. However, TGF beta neither mimicked nor altered the ability of pertussis toxin to catalyze the ADP-ribosylation of a 41,000-Da protein, presumably the alpha subunit of the inhibitory guanine nucleotide-binding regulatory component (Gi) of adenylate cyclase, in cholate-extracted UMR-106 cell membranes. TGF beta also had no effect on the levels of alpha or beta subunits of Gi, as assessed by immunotransfer blotting. In time course studies, brief (less than or equal to 30 min) exposure of cells to TGF beta during early culture was sufficient to increase PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. TGF beta enhancement of PTH and isoproterenol responses was blocked by prior treatment of cells with cycloheximide but not indomethacin. The results suggest that TGF beta enhances PTH response in osteoblast-like cells by action(s) exerted at nonreceptor components of adenylate cyclase. The effect of TGF beta may involve Gi, although in a manner unrelated to either pertussis toxin-catalyzed ADP-ribosylation of the alpha subunit of Gi or changes in levels of Gi subunits. The regulatory action of TGF beta on adenylate cyclase is likely to be mediated by the rapid generation of cellular signals excluding prostaglandins, followed by a prolonged sequence of events involving protein synthesis. These observations suggest a mechanism by which TGF beta may regulate osteoblast responses to systemic hormones. 相似文献
10.
E H Allan J A Hamilton R L Medcalf M Kubota T J Martin 《Biochimica et biophysica acta》1986,888(2):199-207
The plasminogen activator (PA) in clonal osteogenic sarcoma cells of rat origin (UMR 106-01 and UMR 106-06) and in osteoblast-rich rat calvarial cells has been characterized using specific antibodies to be tissue-type PA (tPA). An Mr value of 75,000 by SDS-polyacrylamide gel electrophoresis and fibrin autoradiography supports this characterization. There was also evidence for an Mr 105,000 component, which could be due to a proteinase-inhibitor complex. The mechanism of regulation of this tPA activity has been studied in the clonal osteogenic sarcoma cells. Parathyroid hormone (PTH) and prostaglandin E2, which increase cyclic AMP production in the sarcoma cells, also increased tPA activity. The sensitivity and magnitude of the tPA response to PTH and prostaglandin E2 were increased by simultaneous treatment with isobutylmethylxanthine (IBMX) at drug concentrations which had little effect themselves on tPA activity. In UMR 106-06 cells, which unlike UMR 106-01 cells show a cyclic AMP response to calcitonin, tPA activity was also increased in response to calcitonin, and the effect was enhanced by IBMX. 1,25-Dihydroxyvitamin D-3 also increased tPA activity in the cells, but this response was not modified by IBMX. Synthetic peptide antagonists of PTH-responsive adenylate cyclase, [34Tyr]-hPTH (3-34) amide and [34Tyr]-hPTH (5-34) amide, inhibited the PTH-induced increase in tPA activity over the same concentration range at which they inhibited cyclic AMP production, but the antagonist peptides had no effect on the tPA responses to prostaglandin E2, calcitonin or 1,25-dihydroxyvitamin D-3. These data indicate that cyclic AMP mediates the actions of PTH, prostaglandin E2 and calcitonin in increasing tPA activity in the clonal osteogenic sarcoma cells. 1,25-Dihydroxyvitamin D-3, on the other hand, increases tPA activity through a mechanism independent of cyclic AMP. 相似文献
11.
12.
M Zendzian-Piotrowska M Górska W Dworakowski J Górski 《Journal of physiology and pharmacology》2000,51(1):103-110
The aim of the present study was to examine the effect of treatment with triiodothyronine (T3) on certain aspects of phospholipid metabolism in skeletal muscles. Rats were injected with triiodothyronine (T3) daily (10 microg x 100 g(-1) b.w., s.c.) for six days. Saline-treated rats served as controls. 24 h after the last dose of T3, 14C palmitic acid suspended in the serum of a donor rat, was administered intravenously. Thirty min later, samples of the soleus, white and red section of the gastrocnemius and blood from the abdominal aorta were taken. The muscle phospholipids were extracted and separated into different fractions by means of thin layer chromatography. The following fractions were obtained: shingomeylin, phosphatidylcholine phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and cardiolipin. The phospholipids were quantified and their radioactivity was measured. The plasma free fatty acid concentration and radioactivity was also determined. Treatment with T3 reduced the content of phosphatidylinositol and phosphatidylserine in each muscle type, whereas the concentration of other phospholipids remained stable. T3 increased markedly incorporation of the blood-borne fatty acids into each phospholipid fraction in the muscles. It is concluded that an excess of T3 influences the metabolism of phospholipids in skeletal muscles. 相似文献
13.
14.
A B Borle 《The Journal of cell biology》1968,36(3):567-582
Calcium metabolism was investigated in HeLa cells. 90% of the calcium of the cell monolayer is bound to an extracellular cell coat and can be removed by trypsin-EDTA. The calcium concentration of the naked cell, freed from its coat, is 0.47 mM. The calcium concentration of the medium does not affect the concentration of the naked cell calcium. However, the calcium of the cell coat is proportional to the calcium concentration in the medium. Calcium uptake into the cell coat increases with increasing calcium concentration of the medium, whereas uptake by the naked cell is independent of the calcium of the medium. Anaerobic conditions and metabolic inhibitors do not inhibit calcium uptake by the cell, a fact suggesting that this transfer is a passive phenomenon. The calcium in the extracellular cell coat, was not affected by parathyroid hormone. In contrast, the hormone increased the cellular calcium concentration by stimulating calcium uptake or by enhancing calcium binding to some cell components. These results suggest that, contrary to current thinking, parathyroid hormone influences the cellular calcium balance by mobilizing calcium from the extracellular fluids in order to increase its concentration in some cellular compartment. It is proposed that these effects can enhance calcium transport. 相似文献
15.
16.
17.
18.
Jesús Osada Hortensia Aylagas Maria Jesús Mirõ-Obradors Carmen Arce Evangelina Palacios-Alaiz Marla Cascales 《Neurochemical research》1990,15(9):927-931
Brain phospholipid composition and the [32P]orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide. 相似文献
19.
20.
Direct effect of parathyroid hormone on the proliferation of osteoblast-like cells; a possible involvement of cyclic AMP 总被引:4,自引:0,他引:4
A van der Plas J H Feyen P J Nijweide 《Biochemical and biophysical research communications》1985,129(3):918-925
Serum-starved chick osteoblast-like cells (OB cells) and periosteal fibroblasts (PF cells) were used to study the proliferative effects of parathyroid hormone (PTH) and prostaglandin E2 (PGE2). Both PTH (10(-11) to 10(-8) M) and PGE2 (10(-9) to 10(-5) M) had a direct, dose-related effect on the de novo synthesis of DNA in OB cells. The PF cells only showed a dose-dependent effect in the presence of PGE2 (10(-9) to 10(-5) M). The hormonally induced proliferation of these cells was shown to be dependent on cell density and stimulation time. An optimal response for both cell types was observed in the cell density range 1.5 to 3.5 micrograms DNA/2 cm2, when stimulated for 18 hours. As cAMP-enhancing substances (N6-dBcAMP, forskolin and IBMX) could mimic the PTH- and PGE2-induced proliferation in OB cells, the increased DNA synthesis was concluded to be mainly caused by enhanced cAMP concentrations. 相似文献