首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After overnight food and fluid restriction, nine healthy males were examined before, during, and after lower body positive pressure (LBPP) of 11 +/- 1 mmHg (mean +/- SE) for 30 min and before, during, and after graded lower body negative pressure (LBNP) of -10 +/- 1, -20 +/- 2, and -30 +/- 2 mmHg for 20 min each. LBPP and LBNP were performed with the subject in the supine position in a plastic box encasing the subject from the xiphoid process and down, thus including the splanchnic area. Central venous pressure (CVP) during supine rest was 7.5 +/- 0.5 mmHg, increasing to 13.4 +/- 0.8 mmHg (P less than 0.001) during LBPP and decreasing significantly at each step of LBNP to 2.0 +/- 0.5 mmHg (P less than 0.001) at 15 min of -30 +/- 2 mmHg LBNP. Plasma arginine vasopressin (AVP) did not change significantly in face of this large variation in CVP of 11.4 mmHg. Mean arterial pressure increased significantly during LBPP from 100 +/- 2 to 117 +/- 3 Torr (P less than 0.001) and only at one point during LBNP of -30 +/- 2 mmHg from 102 +/- 1 to 115 +/- 5 mmHg (P less than 0.05). Heart rate did not change during LBPP but increased slightly from 51 +/- 3 to 55 +/- 3 beats/min (P less than 0.05) only at 7 min of LBNP of -30 +/- 2 mmHg. Plasma osmolality, sodium, and potassium did not change during the experiment. Hemoglobin concentration increased during LBPP and LBNP, whereas hematocrit only increased during LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present study was performed to test the hypothesis that application of lower body positive pressure (LBPP) during orthostasis would reduce the baroreflex-mediated enhancement in sympathetic activity in humans. Eight healthy young men were exposed to a 70 degrees head-up tilt (HUT) on application of 30 mmHg LBPP. Muscle sympathetic nerve activity (MSNA) was microneurographically recorded from the tibial nerve, along with hemodynamic variables. We found that in the supine position with LBPP, MSNA remained unchanged (13.4 +/- 3.3 vs. 11.8 +/- 2.3 bursts/min, without vs. with LBPP; P > 0.05), mean arterial pressure was elevated, but arterial pulse pressure and heart rate did not alter. At 70 degrees HUT with LBPP, the enhanced MSNA response was reduced (33.8 +/- 5.0 vs. 22.5 +/- 2.2 bursts/min, without vs. with LBPP; P < 0.05), mean arterial pressure was higher, the decreased pulse pressure was restored, and the increased heart rate was attenuated. We conclude that the baroreflex-mediated enhancement in sympathetic activity during HUT was reduced by LBPP. Application of LBPP in HUT induced an obvious cephalad fluid shift as well as a restoration of arterial pulse pressure, which reduced the inhibition of the baroreceptors. However, the activation of the intramuscular mechanoreflexes produced by 30 mmHg LBPP might counteract the effects of baroreflexes.  相似文献   

3.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

4.
Hemodynamic, gas exchange, and hormonal response induced by application of a 25- to 40-mmHg lower body positive pressure (LBPP), during positive end-expiratory pressure (PEEP; 14 +/- 2.5 cmH2O) were studied in nine patients with acute respiratory failure. Compared with PEEP alone, LBPP increased cardiac index (CI) from 3.57 to 4.76 l X min-1 X m-2 (P less than 0.001) in relation to changes in right atrial pressure (RAP) (11 to 16 mmHg; P less than 0.01). Cardiopulmonary blood volume (CPBV) measured in five patients increased during LBPP from 546 +/- 126 to 664 +/- 150 ml (P less than 0.01), with a positive linear relationship between changes in RAP and CPBV (r = 0.88; P less than 0.001). Venous admixture (Qva/QT) decreased with PEEP from 24 to 16% (P less than 0.001) but did not change with LBPP despite the large increase in CI, leading to a marked O2 availability increase (P less than 0.001). Although PEEP induced a significant rise in plasma norepinephrine level (NE) (from 838 +/- 97 to 1008 +/- 139 pg/ml; P less than 0.05), NE was significantly decreased by LBPP to control level (from 1,008 +/- 139 to 794 +/- 124 pg/ml; P less than 0.003). Plasma epinephrine levels were not influenced by PEEP or LBPP. Changes of plasma renin activity (PRA) paralleled those of NE. No change in plasma arginine vasopressin (AVP) was recorded. We concluded that LBPP increases venous return and CPBV and counteracts hemodynamic effects of PEEP ventilation, without significant change in Qva/QT. Mechanical ventilation with PEEP stimulates sympathetic activity and PRA apparently by a reflex neuronal mechanism, at least partially inhibited by the loading of cardiopulmonary low-pressure reflex and high-pressure baroreflex. Finally, AVP does not appear to be involved in the acute cardiovascular adaptation to PEEP.  相似文献   

5.
To investigate the effects of lower body positive pressure (LBPP) on kidney function while controlling certain cardiovascular and endocrine responses, seven men [35 +/- 2 (SE) yr] underwent 30 min of sitting and then 4.5 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 3 h of tilt. A similar noninflation experiment was conducted where the suited subjects were tilted for 3.5 h. To provide adequate urine flow, the subjects were hydrated during the course of both experiments. Immediately after inflation, mean arterial pressure increased by 8 +/- 3 Torr and pulse rate decreased by 16 +/- 3 beats/min. Plasma renin activity and aldosterone were maximally suppressed (P less than 0.05) after 2.5 h of inflation. Plasma vasopressin decreased by 40-50% (P less than 0.05) and plasma sodium and potassium remained unchanged during both experiments. Glomerular filtration rate was not increased significantly by inflation, whereas inflation induced marked increases (P less than 0.05) in effective renal plasma flow (ERPF), urine flow, osmolar and free water clearances, and total and fractional sodium excretion. No such changes occurred during control. Thus, LBPP induces 1) a significant increase in ERPF and 2) significant changes in kidney excretory patterns similar to those observed during water immersion or the early phase of bed rest, situations that also result in central vascular volume expansion.  相似文献   

6.
Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP.  相似文献   

7.
We hypothesized that sleep restriction (4 consecutive nights, 4 h sleep/night) attenuates orthostatic tolerance. The effect of sleep restriction on cardiovascular responses to simulated orthostasis, arterial baroreflex gain, and heart rate variability was evaluated in 10 healthy volunteers. Arterial baroreflex gain was determined from heart rate responses to nitroprusside-phenylephrine injections, and orthostatic tolerance was tested via lower body negative pressure (LBNP). A Finapres device measured finger arterial pressure. No difference in baroreflex function, heart rate variability, or LBNP tolerance was observed with sleep restriction (P > 0.3). Systolic pressure was greater at -60 mmHg LBNP after sleep restriction than before sleep restriction (110 +/- 6 and 124 +/- 3 mmHg before and after sleep restriction, respectively, P = 0.038), whereas heart rate decreased (108 +/- 8 and 99 +/- 8 beats/min before and after sleep restriction, respectively, P = 0.028). These data demonstrate that sleep restriction produces subtle changes in cardiovascular responses to simulated orthostasis, but these changes do not compromise orthostatic tolerance.  相似文献   

8.
Abdominal aortic pressure (AAP), heart rate (HR), and aortic nerve activity (ANA) during parabolic flight were measured by using a telemetry system to clarify the acute effect of microgravity (microG) on hemodynamics in rats. While the animals were conscious, AAP increased up to 119 +/- 3 mmHg on exposure to microG compared with the value at 1 G (95 +/- 3 mmHg; P < 0.001), whereas AAP decreased immediately on exposure to microG under urethane anesthesia (microG: 72 +/- 9 mmHg vs. 1 G: 78 +/- 8 mmHg; P < 0.05). HR also increased during microG in conscious animals (microG: 349 +/- 12 beats/min vs. 1 G: 324+9 beats/min; P < 0.01), although no change was observed under anesthesia. ANA, which was measured under anesthesia, decreased in response to acute microG exposure (microG: 33 +/- 7 counts/s vs. 1 G: 49 +/- 5 counts/s; P < 0.01). These results suggest that microG essentially induces a decrease of arterial pressure; however, emotional stress and body movements affect the responses of arterial pressure and HR during exposure to acute microG.  相似文献   

9.
In the present experiments the gut hormone peptide YY3-36 (PYY3-36), which inhibits neuropeptide Y (NPY) release, was used as a tool to study the cardiovascular effects of endogenous NPY under different dietary regimens in rats instrumented with a telemetry transmitter. In a first experiment, rats were placed on a standard chow diet ad libitum and in a second experiment on a high-fat diet ad libitum. After 6 wk, PYY3-36 (300 microg/kg) or vehicle was injected intraperitoneally. In a third experiment, PYY3-36 or vehicle was administered after 14 days of 50% restriction of a standard chow diet. In food-restricted rats, PYY3-36 increased mean arterial pressure (7 +/- 1 mmHg, mean +/- SE, P < 0.001 vs. saline, 1-way repeated-measures ANOVA with Bonferroni t-test) and heart rate (22 +/- 4 beats/min, P < 0.001) during 3 h after administration. Conversely, PYY3-36 did not influence mean arterial pressure (0 +/- 1 mmHg) and heart rate (-8 +/- 5 beats/min) significantly in rats on a high-fat diet. Rats fed standard chow diet ad libitum showed an intermediate response (mean arterial pressure 4 +/- 1 mmHg, P < 0.05, and heart rate 5 +/- 2 beats/min, not significant). Thus, in our studies, divergent cardiovascular responses to PYY3-36 were observed in rats on different dietary regimens. These findings suggest that the cardiovascular effects of PYY3-36 depend on the hypothalamic NPY release, which is increased after chronic food restriction and decreased during a high-fat diet.  相似文献   

10.
The effects of posture on the lymphatic outflow pressure and lymphatic return of albumin were examined in 10 volunteers. Lymph flow was stimulated with a bolus infusion of isotonic saline (0.9%, 12.6 ml/kg body wt) under four separate conditions: upright rest (Up), upright rest with lower body positive pressure (LBPP), supine rest (Sup), and supine rest with lower body negative pressure (LBNP). The increase in plasma albumin content (Delta Alb) during the 2 h after bolus saline infusion was greater in Up than in LBPP: 82.9 +/- 18.5 vs. -28.4 mg/kg body wt. Delta Alb was greater in LBNP than in Sup: 92.6 vs. -22.5 +/- 18.9 mg/kg body wt (P < 0.05). The greater Delta Alb in Up and Sup with LBNP were associated with a lower estimated lymphatic outflow pressure on the basis of the difference in central venous pressure (Delta CVP). During LBPP, CVP was increased compared with Up: 3.8 +/- 1.4 vs. -1.2 +/- 1.2 mmHg. During LBNP, CVP was reduced compared with Sup: -3.0 +/- 2.2 vs. 1.7 +/- 1.0 mmHg. The translocation of protein into the vascular space after bolus saline infusion reflects lymph return of protein and is higher in Up than in Sup. Modulation of CVP with LBPP or LBNP in Up and Sup, respectively, reversed the impact of posture on lymphatic outflow pressure. Thus posture-dependent changes in lymphatic protein transport are modulated by changes in CVP through its mechanical impact on lymphatic outflow pressure.  相似文献   

11.
The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.  相似文献   

12.
We tested the hypothesis that peripheral vascular responses (in the lower and upper limbs) to application of lower body positive pressure (LBPP) are dependent on the posture of the subjects. We measured heart rate, stroke volume, mean arterial pressure, leg and forearm blood flow (using the Doppler ultrasound technique), and leg (LVC) and forearm (FVC) vascular conductance in 11 subjects (9 men, 2 women) without and with LBPP (25 and 50 mmHg) in supine and upright postures. Mean arterial pressure increased in proportion to increases in LBPP and was greater in supine than in upright subjects. Heart rate was unchanged when LBPP was applied to supine subjects but was reduced in upright ones. Leg blood flow and LVC were both reduced by LBPP in supine subjects [LVC: 4.8 (SD 4.0), 3.6 (SD 3.5), and 1.4 (SD 1.8) ml.min(-1).mmHg(-1) before LBPP and during 25 and 50 mmHg LBPP, respectively; P < 0.05] but were increased in upright ones [LVC: 2.0 (SD 1.2), 3.4 (SD 3.4), and 3.0 (SD 2.0) ml.min(-1).mmHg(-1), respectively; P < 0.05]. Forearm blood flow and FVC both declined when LBPP was applied to supine subjects [FVC: 1.3 (SD 0.6), 1.0 (SD 0.4), and 0.9 (SD 0.6) ml. min(-1).mmHg(-1), respectively; P < 0.05] but remained unchanged in upright ones [FVC: 0.7 (SD 0.4), 0.7 (SD 0.4), and 0.6 (SD 0.5) ml.min(-1).mmHg(-1), respectively]. Together, these findings indicate that the leg vascular response to application of LBPP is posture dependent and that the response differs in the lower and upper limbs when subjects assume an upright posture.  相似文献   

13.
Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter) and HR (ECG) were measured. Baroreflex sensitivity of HR was assessed by bolus intravenous infusion of phenylephrine at each workload. In both positions, HR was higher in the patients than the controls during exercise. Supine baroreflex sensitivity (HR/systolic pressure) in POTS patients was -1.3 +/- 0.1 beats.min(-1).mmHg(-1) at rest and decreased to -0.6 +/- 0.1 beats.min(-1).mmHg(-1) during 75-W exercise, neither significantly different from the controls (P > 0.6). In the upright position, baroreflex sensitivity in POTS patients at rest (-1.4 +/- 0.1 beats.min(-1).mmHg(-1)) was higher than the controls (-1.0 +/- 0.1 beats.min(-1).mmHg(-1)) (P < 0.05), and it decreased to -0.1 +/- 0.04 beats.min(-1).mmHg(-1) during 75-W exercise, lower than the controls (-0.3 +/- 0.09 beats.min(-1).mmHg(-1)) (P < 0.05). The reduced arterial baroreflex sensitivity of HR during upright exercise was accompanied by greater fluctuations in systolic and pulse pressure in the patients than in the controls with 56 and 90% higher coefficient of variations, respectively (P < 0.01). However, when baroreflex control of HR was corrected for differences in HR, it was similar between the patients and controls during upright exercise. These results suggest that the tachycardia during exercise in POTS was not due to abnormal baroreflex control of HR.  相似文献   

14.
The maintenance of stable blood pressure during postural changes is known to involve integration of vestibular and cardiovascular central regulatory mechanisms. Sensory activity in the vestibular system plays an important role in cardiovascular regulation. The purpose of this study was to determine the role of vestibular gravity receptors in normal baroreflex function. Baroreflex heart rate (HR) responses to changes in blood pressure (BP) in otoconia-deficient head tilt (het) mice (n = 8) were compared with their wild-type littermates (n = 12). The study was carried out in conscious male mice chronically implanted with arterial and venous catheters for recording BP and HR and for the infusion of vasoactive drugs. Resting HR was higher in the het mice (661 +/- 13 beats/min) than in the wild-type mice (579 +/- 20 beats/min). BP was comparable in the het (113 +/- 4 mmHg) and wild-type mice (104 +/- 4 mmHg). The slopes of reflex decreases in HR in response to phenylephrine (PE) were blunted in the het mice (-5.5 +/- 1.5 beats x min(-1) x mmHg(-1)) compared with the wild-type mice (-8.5 +/- 0.9 beats x min(-1) x mmHg(-1)). Likewise, reflex tachycardic responses to decreases in BP with sodium nitroprusside (SNP) were significantly blunted in the het mice (-0.8 +/- 0.3 beats x min(-1) x mmHg(-1)) versus the wild-type mice (-2.2 +/- 0.6 beats x min(-1) x mmHg(-1)). Frequency-domain analysis of the HR variability suggests that under resting conditions, parasympathetic contribution was lower in the het versus wild-type mice. Mapping of the expression of immediate-early gene product, c-Fos, in forebrain and brain stem nuclei in response to a BP challenge showed no differences between the wild-type and het mice. These results suggest that tonic activity of gravity receptors modulates and is required for normal function of the cardiac baroreflexes.  相似文献   

15.
The cardiovascular responses induced by exercise are initiated by two primary mechanisms: central command and reflexes originating in exercising muscles. Although our understanding of cardiovascular responses to exercise in mice is progressing, a murine model of cardiovascular responses to muscle contraction has not been developed. Therefore, the purpose of this study was to characterize the cardiovascular responses to muscular contraction in anesthetized mice. The results of this study indicate that mice demonstrate significant increases in blood pressure (13.8 +/- 1.9 mmHg) and heart rate (33.5 +/- 11.9 beats/min) to muscle contraction in a contraction-intensity-dependent manner. Mice also demonstrate 23.1 +/- 3.5, 20.9 +/- 4.0, 21.7 +/- 2.6, and 25.8 +/- 3.0 mmHg increases in blood pressure to direct stimulation of tibial, peroneal, sural, and sciatic hindlimb somatic nerves, respectively. Systemic hypoxia (10% O(2)-90% N(2)) elicits increases in blood pressure (11.7 +/- 2.6 mmHg) and heart rate (42.7 +/- 13.9 beats/min), while increasing arterial pressure with phenylephrine decreases heart rate in a dose-dependent manner. The results from this study demonstrate the feasibility of using mice to study neural regulation of cardiovascular function during a variety of autonomic stimuli, including exercise-related drives such as muscle contraction.  相似文献   

16.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

17.
The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.  相似文献   

18.
Evidence suggests that both the arterial baroreflex and vestibulosympathetic reflex contribute to blood pressure regulation, and both autonomic reflexes integrate centrally in the medulla cardiovascular center. A previous report indicated increased sympathetic baroreflex sensitivity during the midluteal (ML) phase of the menstrual cycle compared with the early follicular (EF) phase. On the basis of this finding, we hypothesize an augmented vestibulosympathetic reflex during the ML phase of the menstrual cycle. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate responses to head-down rotation (HDR) were measured in 10 healthy females during the EF and ML phases of the menstrual cycle. Plasma estradiol (Delta72 +/- 13 pg/ml, P < 0.01) and progesterone (Delta8 +/- 2 ng/ml, P < 0.01) were significantly greater during the ML phase compared with the EF phase. The menstrual cycle did not alter resting MSNA, MAP, and heart rate (EF: 13 +/- 3 bursts/min, 80 +/- 2 mmHg, 65 +/- 2 beats/min vs. ML: 14 +/- 3 bursts/min, 81 +/- 3 mmHg, 64 +/- 3 beats/min). During the EF phase, HDR increased MSNA (Delta3 +/- 1 bursts/min, P < 0.02) but did not change MAP or heart rate (Delta0 +/- 1 mmHg and Delta1 +/- 1 beats/min). During the ML phase, HDR increased both MSNA and MAP (Delta4 +/- 1 bursts/min and Delta3 +/- 1 mmHg, P < 0.04) with no change in heart rate (Delta0 +/- 1 beats/min). MSNA and heart rate responses to HDR were not different between the EF and ML phases, but MAP responses to HDR were augmented during the ML phase (P < 0.03). Our results demonstrate that the menstrual cycle does not influence the vestibulosympathetic reflex but appears to alter MAP responses to HDR during the ML phase.  相似文献   

19.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

20.
The purpose of this study was to characterize left ventricular (LV) diastolic filling and systolic performance during graded arm exercise and to examine the effects of lower body positive pressure (LBPP) or concomitant leg exercise as means to enhance LV preload in aerobically trained individuals. Subjects were eight men with a mean age (+/-SE) of 26.8 +/- 1.2 yr. Peak exercise testing was first performed for both legs [maximal oxygen uptake (Vo(2)) = 4.21 +/- 0.19 l/min] and arms (2.56 +/- 0.16 l/min). On a separate occasion, LV filling and ejection parameters were acquired using non-imaging scintography using in vivo red blood cell labeling with technetium 99(m) first during leg exercise performed in succession for 2 min at increasing grades to peak effort. Graded arm exercise (at 30, 60, 80, and 100% peak Vo(2)) was performed during three randomly assigned conditions: control (no intervention), with concurrent leg cycling (at a constant 15% leg maximal Vo(2)) or with 60 mmHg of LBPP using an Anti G suit. Peak leg exercise LV ejection fraction was higher than arm exercise (60.9 +/- 1.7% vs. 55.9 +/- 2.7%; P < 0.05) as was peak LV end-diastolic volume was reported as % of resting value (110.3 +/- 4.4% vs. 97 +/- 3.7%; P < 0.05) and peak filling rate (end-diastolic volume/s; 6.4 +/- 0.28% vs. 5.2 +/- 0.25%). Concomitant use of either low-intensity leg exercise or LBPP during arm exercise failed to significantly increase LV filling or ejection parameters. These observations suggest that perturbations in preload fail to overcome the inherent hemodynamic conditions present during arm exercise that attenuate LV performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号