首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The moderately thermophilic acidophilic bacteria Sulfobacillus thermosulfidooxidans, strain 1269, S. thermosulfidooxidanssubsp. asporogenes, strain 41, and the thermotolerant strain S. thermosulfidooxidanssubsp. thermotolerans K1 prefer mixotrophic growth conditions (the concomitant presence of ferrous iron, thiosulfate, and organic compounds in the medium). In heterotrophic and autotrophic growth conditions, these sulfobacilli can grow over only a few culture transfers. In cell-free extracts of these sulfobacilli, key enzymes of the Embden–Meyerhof–Parnas, pentose-phosphate, and Entner–Doudoroff pathways were found. The role of a particular pathway depended on the cultivation conditions. All of the enzymes assayed were most active under mixotrophic conditions in the presence of Fe2+and glucose, suggesting the operation of all of the three major pathways of carbohydrate metabolism under these conditions. However, the operation of the Entner–Doudoroff pathway in strain 41 was restricted under mixotrophic conditions. After the first culture transfer from mixotrophic to heterotrophic conditions, the utilization of glucose occurred only via the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. After the first culture transfer from mixotrophic to autotrophic conditions, the activity of carbohydrate metabolism enzymes decreased in all of the strains studied; in strain K1, only the glycolytic pathway remained operative. The high activity of fructose-bisphosphate aldolase, remaining in strain 41 cells under these conditions, suggests the involvement of this enzyme in the reactions of the Calvin cycle or of gluconeogenesis.  相似文献   

2.
To determine enzymatic activities in the thermotolerant strain K1 (formerly "Sulfobacillus thermosulfidooxidans subsp. thermotolerans"), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. An increased content of carbon dioxide (up to 5 vol%) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide was fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase decreased with the increasing content of CO2 in the medium.  相似文献   

3.
Aerobic thermoacidophilic chemolithotrophic bacteria Sulfobacillus thermosulfidooxidans 1269T and Sulfobacillus thermosulfidooxidans subsp. asporogenes 41 were shown to be resistant to stress factors, including high concentrations of Zn2+ (0.8 M) and H+ (pH 1.2) that exceeded the optimum values. The growth and biomass gain rates decreased, but bacteria retained their functions. The activity of nearly all enzymes involved in carbon metabolism decreased. Glucose was primarily metabolized via the Entner--Doudoroff pathway. The activity tricarboxylic acid cycle enzymes decreased compared to that in cells grown under normal conditions. After saturation of the growth medium with 5 vol % CO2, sulfobacteria utilized glucose by the Embden-Meyerhof and pentose phosphate pathways under mixotrophic conditions.  相似文献   

4.
A comparative study of the activities of the enzymes of carbon metabolism from the cells of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus (strains N1 and SSO) and Sulfobacillus thermosulfidooxidans subsp. asporogenes (strain 41) was carried out grown in a high layer of medium without forced aeration and cells grown with intense aeration. Limited air access to the growing S. sibiricus N1 cells resulted in switching from the pentose phosphate pathway of glucose metabolism to the Entner-Doudoroff pathway while the Embden-Meyerhof-Parnas pathway persisted. Irrespective of the level of the aeration, in the cells of S. sibiricus SSO and S. thermosulfidooxidans subsp. asporogenes 41, degradation of the glucose occurred via the Entner-Doudoroff and pentose phosphate metabolic pathways, respectively, as well as via the Embden-Meyerhof-Parnas pathway. Prolonged growth of S. sibiricus, strains N1 and SSO, in a high layer of the medium without forced aeration led to the repression of synthesis of most of the tricarboxylic acid cycle (TCA cycle) enzymes, in particular dehydrogenases, as well as of some carboxylases including RuBisCO. The traits of carbon metabolism in various strains of Sulfobacillus under conditions of oxygen deficiency are discussed.  相似文献   

5.
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold-arsenic concentrate and elemental sulfur as a source of energy. The growth in the presence of S0 under auto- or mixotrophic conditions was less stable compared with the media containing iron monoxide. The enzymes involved in oxidation of sulfur inorganic compounds--thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodonase, adenylyl sulfate reductase, sulfite oxidase, and sulfur oxygenase--were discovered in the cells of Sulfobacillus grown in the mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle--ribulose bisphosphate carboxylase--and several other enzymes involved in heterotrophic fixation of carbonic acid. Activities of carboxylases depended on the composition of cultivation media.  相似文献   

6.
The hyperthermophilic, facultatively heterotrophic crenarchaeum Thermoproteus tenax was analyzed using a low-coverage shotgun-sequencing approach. A total of 1.81 Mbp (representing 98.5% of the total genome), with an average gap size of 100 bp and 5.3-fold coverage, are reported, giving insights into the genome of T. tenax. Genome analysis and biochemical studies enabled us to reconstruct its central carbohydrate metabolism. T. tenax uses a variant of the reversible Embden-Meyerhof-Parnas (EMP) pathway and two different variants of the Entner-Doudoroff (ED) pathway (a nonphosphorylative variant and a semiphosphorylative variant) for carbohydrate catabolism. For the EMP pathway some new, unexpected enzymes were identified. The semiphosphorylative ED pathway, hitherto supposed to be active only in halophiles, is found in T. tenax. No evidence for a functional pentose phosphate pathway, which is essential for the generation of pentoses and NADPH for anabolic purposes in bacteria and eucarya, is found in T. tenax. Most genes involved in the reversible citric acid cycle were identified, suggesting the presence of a functional oxidative cycle under heterotrophic growth conditions and a reductive cycle for CO2 fixation under autotrophic growth conditions. Almost all genes necessary for glycogen and trehalose metabolism were identified in the T. tenax genome.  相似文献   

7.
8.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

9.
The moderately thermophilic acidophilic bacterium Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41 is capable of utilizing sulfides of gold–arsenic concentrate and elemental sulfur as a source of energy. Growth in the presence of S0 under auto- or mixotrophic conditions was less stable than in media containing iron monoxide. The enzymes involved in the oxidation of sulfur inorganic compounds—thiosulfate-oxidizing enzyme, tetrathionate hydrolase, rhodanase, adenylyl phosphosulfate reductase, sulfite oxidase, and sulfur oxygenase—were determined in the cells of the sulfobacilli grown in mineral medium containing 0.02% yeast extract and either sulfur or iron monoxide and thiosulfate. Cell-free extracts of the cultures grown in the medium with sulfur under auto- or mixotrophic conditions displayed activity of the key enzyme of the Calvin cycle—ribulose bisphosphate carboxylase—and several other enzymes involved in the heterotrophic fixation of carbon dioxide. Activities of carboxylases depended on the composition of the cultivation media.  相似文献   

10.
Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed.  相似文献   

11.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

12.
Chlorella sp. strain VJ79 was isolated from a total heterotrophic count of a wastewater collector. It grows autotrophically, heterotrophically, and mixotrophically on a variety of organic substrates. Glucose and serine promote a mixotrophic growth from which the yield is higher than the sum of autotrophic and heterotrophic yields, but serine assimilation requires light. The interaction of glucose and light was studied in proliferating and nonproliferating cells by respirometry (IRGA and Warburg) and growth experiments. Glucose inhibits the photosynthetic CO(2) fixation ten-fold and modifies the pigmentary system as it does in heterotrophic cultures. Light inhibits glucose uptake and assimilation, but under mixotrophic conditions maximal utilization of glucose is obtained. Mutants defective in autotrophic growth were isolated by mutagenesis with nitrosoguanidine. They show a degenerated pigmentary system and a mixotrophic growth yield equal to that of the heterotrophic growth. The analysis of the mixotrophic system shows that light energy, dissipated during autotrophic growth, is used under mixotrophic conditions. From the increase in growth, the increase in photosynthetic efficiency can be calculated as ca. sixfold.  相似文献   

13.
Chlorella pyrenoidosa was cultivated under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. The influence of light on the carbon and energy metabolism of microalgae was investigated by the use of metabolic flux analysis. The respiratory activity of microalgae in the light was assessed from the autotrophic flux distribution. Results showed that the glycolytic pathway, tricarboxylic acid cycle and mitochondrial oxidative phosphorylation maintained high activities during illumination, indicating little effect of light on these pathways, while the flux through the pentose phosphate pathway during illumination was very small due to the light-mediated regulation. The theoretical yields of biomass on ATP decreased in the following order: heterotrophic culture>mixotrophic culture>autotrophic culture, and a significant amount of the available ATP was required for maintenance processes in microalgal cells. The energy conversion efficiency between the supplied energy to culture, the absorbed energy by cells and the free energy conserved in ATP were analyzed for the different cultures. Analysis showed that the heterotrophic culture generated more ATP from the supplied energy than the autotrophic and mixotrophic cultures. The maximum thermodynamic efficiency of ATP production from the absorbed energy, which was calculated from the metabolic fluxes at zero growth rate, was the highest in the heterotrophic culture and as low as 16% in the autotrophic culture. By evaluating the energy economy through the energy utilization efficiency, it was found that the biomass yield on the supplied energy was the lowest in the autotrophic cultivation, and the cyclic culture gave the most efficient utilization of energy for biomass production.  相似文献   

14.
The phenotypic characteristics of the species Sulfobacillus thermotolerans Kr1T, as dependent on the cultivation conditions, are described in detail. High growth rates (0.22–0.30 h?1) and high oxidative activity were recorded under optimum mixotrophic conditions at 40 °C on medium with inorganic (Fe(II), S0, or pyrite-arsenopyrite concentrate) and organic (glucose and/or yeast extract) substrates. In cells grown under optimum conditions on medium with iron, hemes a, b, and, most probably, c were present, indicating the presence of the corresponding cytochromes. Peculiar extended structures in the form of cylindrical cords, never observed previously, were revealed; a mucous matrix, likely of polysaccharide nature, occurred around the cells. In the cells of sulfobacilli grown litho-, organo-, and mixotrophically at 40 °C, the enzymes of the three main pathways of carbon utilization and some enzymes of the TCA cycle were revealed. The enzyme activity was maximum under mixotrophic growth conditions. The growth rate in the regions of limiting temperatures (55 °C and 12–14 °C) decreased two-and tenfold, respectively; no activity of 6-phosphogluconate dehydrogenase, one of the key enzymes of the oxidative pentose phosphate pathway, could be revealed; and a decrease in the activity of almost all enzymes of glucose metabolism and of the TCA cycle was observed. The rate of 14CO2 fixation by cells under auto-, mixo-, and heterotrophic conditions constituted 31.8, 23.3, and 10.3 nmol/(h mg protein), respectively. The activities of RuBP carboxylase (it peaked during lithotrophic growth) and of carboxylases of heterotrophic carbon dioxide fixation were recorded. The physiological and biochemical peculiarities of the thermotolerant bacillus are compared versus moderately thermophilic sulfobacilli.  相似文献   

15.
《Phytochemistry》1986,26(1):85-87
Enzymatic evidence was sought for the operation of pathways involved in glucose and gluconate catabolisms in fast- and slow-growing Rhizobium species including members of the cowpea group. Enzymes of the Entner-Doudoroff pathway, pentose phosphate pathway and tricarboxylic acid cycle were detected in fast-growing rhizobia but the pentose phosphate pathway was absent in slow-growers, regardless of the carbon source used. When analysed for enzymes of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in glucose-grown cells, the pathways were found to operate simultaneously in rhizobia.  相似文献   

16.
Beggiatoa alba strain B18LD was grown in continuous culture under heterotrophic conditions on acetate or acetate and asparagine and under mixotrophic conditions on acetate plus either 1 mM sodium sulfide or 1 mM sodium thiosulfate. Considerable differences were observed between the yields and the cell compositions of heterotrophic and mixotrophic cultures at all dilution rates tested. The dry weight yield per gram acetate utilized was approximately three times higher in the acetate-sulfide mixotrophic culture than in the acetate heterotrophic culture, whereas the poly--hydroxybutyric acid and carbohydrate contents were much higher in the heterotrophic cultures. The high yields (0.52–0.75, corrected for the weight of the sulfur) obtained with the mixotrophic cultures imply that the acetate was utilized mainly for biosynthesis. Thus, the oxidation of sulfide supplied energy. The addition of catalase to the chemostat cultures increased yields slightly, but it was insufficient to explain the differences between the heterotrophic and the mixotrophic cultures.  相似文献   

17.
To determine enzymatic activities in the thermotolerant strain K1 (formerly Sulfobacillus thermosulfidooxidans subsp. thermotolerans), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. The increased content of carbon dioxide (up to 5 vol %) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide is fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phospho-enolpyruvate carboxytransphosphorylase decreased with increasing content of CO2 in the medium.  相似文献   

18.
Heterotrophic Metabolism of the Chemolithotroph Thiobacillus ferrooxidans   总被引:4,自引:2,他引:2  
Glucose-6-phosphate dehydrogenase and the enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydrase and 2-keto-3-deoxy-6-phosphogluconate aldolase (assayed together), are induced during heterotrophic growth of Thiobacillus ferrooxidans on an iron-glucose-supplemented medium or on glucose alone. By contrast, autotrophic cells (iron-grown) contain low levels of these enzymes. Fructose 1, 6-diphosphate aldolase, an enzyme of the Embden-Meyerhof pathway, is present at low levels irrespective of the growth medium, suggesting that this enzyme is not involved in energy-yielding reactions but merely provides intermediates for biosynthesis. The Entner-Doudoroff and pentose-phosphate pathways are the principle means through which glucose is dissimilated and is presumed to be concerned with energy production. Isotopic studies showed that a high rate of CO(2) formation from specifically labeled glucose came from carbon atoms 1 and 4. An unexpectedly high rate of evolution of CO(2) also came from carbon 6, suggesting that the triose phosphate formed during glucose breakdown and specifically as a result of 2-keto-3-deoxy-6-phosphogluconate aldolase activity, was metabolized via some unorthodox metabolic route. Cells grown in the iron-supplemented and glucose-salts media have a complete tricarboxylic acid cycle, whereas autotrophically grown T. ferrooxidans lacked both alpha-ketoglutarate dehydrogenase and reduced nicotinamide adenine dinucleotide oxidase. Two isocitrate dehydrogenases [nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) specific] were present. NAD-linked enzyme was constitutive, whereas the NADP-linked enzyme was induced upon adaptation of autotrophic cells to heterotrophic growth.  相似文献   

19.
Abstract Pulse labelling experiments and enzyme studies show that Thermoproteus tenax is able to degrade glucose via the Embden-Meyerhof-Parnas (EMP) pathway. T. tenax is the first archeum for which the glycolytic EMP pathway could be established. One of the key enzymes, 6-phosphofructokinase of T. tenax depends on (pyrophosphate-fructose-6-phosphate-1-phosphotransferase) instead of ATP as found in some bacterial and eucaryal species. In addition to the intermediates of the EMP pathway the intermediary products of the non-phosphorylated Entner-Doudoroff pathway were also detected by pulse labelling experiments indicating that under chemoorganotrophic conditions at least 2 glycolytic pathways are operative in T. tenax .  相似文献   

20.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号