首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
3.
4.
5.
σ32 controls expression of heat shock genes in Escherichia coli and is widely distributed in proteobacteria. The distinguishing feature of σ32 promoters is a long −10 region (CCCCATNT) whose tetra-C motif is important for promoter activity. Using alanine-scanning mutagenesis of σ32 and in vivo and in vitro assays, we identified promoter recognition determinants of this motif. The most downstream C (−13) is part of the −10 motif; our work confirms and extends recognition determinants of −13C. Most importantly, our work suggests that the two upstream Cs (−16, −15) constitute an 'extended −10' recognition motif that is recognized by K130, a residue universally conserved in β- and γ-proteobacteria. This residue is located in the α-helix of σDomain 3 that mediates recognition of the extended −10 promoter motif in other σs. K130 is not conserved in α- and δ-/ε-proteobacteria and we found that σ32 from the α-proteobacterium Caulobacter crescentus does not need the extended −10 motif for high promoter activity. This result supports the idea that K130 mediates extended −10 recognition. σ32 is the first Group 3 σ shown to use the 'extended −10' recognition motif.  相似文献   

6.
7.
8.
9.
The promoter-like sequence P15 that was previously cloned from the chromosome of Lactobacillus acidophilus ATCC 4356 is active in Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus acidophilus, and Escherichia coli, but not in Lactococcus lactis. N-methyl-N-nitroso-N-guanidine (MNNG) mutagenesis of P15 was used to select for a promoter active in L. lactis MG1363. Molecular analysis of the mutated promoter (designated P16) revealed a 90 bp deletion and a T-->A transversion. This deletion, in combination with the addition to the transversion, created a promoter with putative -35 and -10 hexamers identical to the consensus promoter sequence found in E. coli and Bacillus subtilis vegetative promoters. The activity of P16 was measured by its ability to promote chloramphenicol resistance in different bacteria when inserted in the promoter-probe plasmid pBV5030 (designated pLA16). The MIC of chloramphenicol in L. lactis, L. reuteri, L. plantarum, E. coli, and L. acidophilus harbouring pLA16 were 30, 170, 180, > 500, and 3 micrograms/mL, respectively. This represents an increase in promoter activity compared to P15 in L. reuteri of 3-fold, in L. plantarum of 9-fold, and in E. coli of at least 2.5-fold, but a decrease in L. acidophilus of 7-fold.  相似文献   

10.
11.
Abstract: Hyperphosphorylated τ, the major component of the paired helical filaments of Alzheimer's disease, was found to accumulate in the brains of mice in which the calcineurin Aα gene was disrupted [calcineurin Aα knockout (CNAα−/−)]. The hyperphosphorylation involved several sites on τ, especially the Ser396 and/or Ser404 recognized by the PHF-1 monoclonal antibody. The increase in phosphorylated τ content occurred primarily in the mossy fibers of the CNAα−/− hippocampus, which contained the highest level of calcineurin in brains of wild-type mice. The CNAα−/− mossy fibers also contained less neurofilament protein than normal, although the overall level of neurofilament phosphorylation was unchanged. In the electron microscope, the mossy fibers of CNAα−/− mice exhibited abnormalities in their cytoskeleton and a lower neurofilament/microtubule ratio than those of wild-type animals. These findings indicate that hyperphosphorylated τ can accumulate in vivo as a result of reduced calcineurin activity and is accompanied by cytoskeletal changes that are likely to have functional consequences on the affected neurons. The CNAα−/− mice were found in a separate study to have deficits in learning and memory that may result in part from the cytoskeletal changes in the hippocampus.  相似文献   

12.
13.
Heat-shock and general stress response in Bacillus subtilis   总被引:16,自引:4,他引:12  
The induction of stress proteins is an important component of the adaptional network of a non-growing cell of Bacillus subtilis . A diverse range of stresses such as heat shock, salt stress, ethanol, starvation for oxygen or nutrients etc. induce the same set of proteins, called general stress proteins. Although the adaptive functions of these proteins are largely unknown, they are proposed to provide general and rather non-specific protection of the cell under these adverse conditions. In addition to these non-specific general stress proteins, all extracellular signals induce a set of specific stress proteins that may confer specific protection against a particular stress factor. In B. subtilis at least three different classes of heat-inducible genes can be defined by their common regulatory characteristics: Class I genes, as exemplified by the dnaK and groE operons, are most efficiently induced by heat stress. Their expression involves a σA-dependent promoter, an inverted repeat (called the CIRCE element) highly conserved among eubacteria, and probably a repressor interacting with the CIRCE element. The majority of general stress genes (class II, more than 40) are induced at σB-dependent promoters by different growth-inhibiting conditions. The activation of σB by stress or starvation is the crucial event in the induction of this large stress regulon. Only a few genes, including lon clpC clpP , and ftsH, can respond to different stress factors independently of σB or CIRCE (class III). Stress induction of these genes occurs at promoters presumably recognized by σA and probably involves additional regulatory elements which remain to be defined.  相似文献   

14.
Abstract The gene coding for the thermostable α-amylase Bacillus licheniformis has been isolated from a direct shotgun in Escherichia coli using the bacteriophage lambda as a vector. The fragment containing the α-amylase gene has been sub-cloned in pBR322 and its restriction map determined. The α-amylase produced by the E. coli clones retained the thermostability of the B. licheniformis enzyme. Expression and properties of the gene product in E. coli and Bacillus subtilis have been examined.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号