首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule-associated protein 1B (MAP1B) is prominently expressed during early stages of neuronal development, and it has been implicated in axonal growth and guidance. MAP1B expression is also found in the adult brain in areas of significant synaptic plasticity. Here, we demonstrate that MAP1B is present in dendritic spines, and we describe a decrease in the density of mature dendritic spines in neurons of MAP1B-deficient mice that was accompanied by an increase in the number of immature filopodia-like protrusions. Although these neurons exhibited normal passive membrane properties and action potential firing, AMPA receptor-mediated synaptic currents were significantly diminished. Moreover, we observed a significant decrease in Rac1 activity and an increase in RhoA activity in the post-synaptic densities of adult MAP1B(+/-) mice when compared with wild type controls. MAP1B(+/-) fractions also exhibited a decrease in phosphorylated cofilin. Taken together, these results indicate a new and important role for MAP1B in the formation and maturation of dendritic spines, possibly through the regulation of the actin cytoskeleton. This activity of MAP1B could contribute to the regulation of synaptic activity and plasticity in the adult brain.  相似文献   

2.
3.
4.
The functions of microtubule‐associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule‐stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 953–971, 2014  相似文献   

5.
The expression patterns of three microtubule-associated proteins (MAP1A, MAP1B, and MAP2A&B) were investigated in the developing optic tectum. Expression of MAP1B and middle-molecular-weight peptide of neurofilament (NF-M) was first observed in the same mesencephalic cells on day 3 of incubation, indicating that neuroblasts had been produced. At day 5, MAP1A and MAP2A&B expression appeared in the cellular layer containing the first neuroblasts that differentiate into large multipolar cells. The NF-M+ neurites in the striatum album centrale (SAC) and the striatum opticum (SO) were MAP1B+ up to day 19, but the intensity of MAP1B immunoreactivity decreased with development. All three MAPs were expressed in large multipolar neurons in the developing stratum griseum centrale from the beginning of maturation. Stratum griseum et fibrosum centrale cellular layers, containing radially arranged piriform neurons, were MAP1A/MAP2A&B on day 11 but became MAP1A+/MAP2A&B+ during later stages. These results suggest that the timing of MAP expression in neuronal maturation of large multipolar cells differs from that of piriform cells. The expression of MAPs has revealed specific cellular events in the developing optic tectum. Based on our observations, the development of the optic tectum can be divided into four periods.  相似文献   

6.
7.
Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.  相似文献   

8.
9.
pRb/E2F1 activity is coordinately regulated during the cell cycle progression, while the molecular strategies safeguarding this pathway are not fully understood. We have previously shown that RNA binding protein QKI inhibits the cell proliferation and promotes the differentiation of gastrointestinal epithelium, suggesting a role of QKI in cell cycle regulation. Here we found that with the cell entry into S phase, QKI expression increased both at the mRNA and protein levels, which was reminiscent of cyclin E expression. Forced expression of E2F1 increased the endogenous level of QKI. Promoter luciferase assay and ChIP analysis identified that the -542~-538 E2F1 binding site was responsible for the upregulation. Increased QKI expression by E2F1, in turn, reduced the E2F1 activity and delayed S-phase entry, forming a negative feedback. As a gene expression regulator, QKI overexpression increased p27, while it decreased cyclin D1 and c-fos expression. Molecularly, p27 and c-fos were direct targets of QKI, while cyclin D1 reduction might be an indirect effect. Taken together, our results reveal that E2F1 directly transcribes QKI, which, in turn, negatively regulates the cell cycle by targeting multiple cell cycle regulators, forming an E2F1-QKI-pRb/E2F1 negative feedback loop.  相似文献   

10.
11.
A set of partially overlapping cDNA clones covering 9 kb of continuous sequence encoding the high molecular weight microtubule-associated protein (MAP) 1B, was isolated from a rat brain library in lambda gt11. The protein encoded was immunoreactive with monoclonal antibodies raised against calf MAP 1B, rat MAP 1X, and rat MAP 5, as shown by immunoblotting. Using Northern blot analysis, it was shown that the level of MAP 1B mRNA increased dramatically upon nerve growth factor-induced PC12 cell differentiation. The expression of polypeptides encoded by cDNA constructs, in conjunction with microtubule binding assays, revealed two separate microtubule binding domains, corresponding to sequences at the 5' and 3' end of the mRNA. As shown by DNA sequencing, the binding domain encoded by 5' terminal sequences consisted of the basic repeat motif KKEE(I/V), previously identified in mouse MAP 1B (Noble, M., S. A. Lewis, N. J. Cowan, J. Cell Biol. 109, 3367-3376 (1989)). The second binding domain, too, was found to be basic, but without any apparent repeat structure. It is concluded that single proteolytically unprocessed MAP 1B molecules would have the potential to function as microtubule cross-linkers.  相似文献   

12.
The microtubule‐associated protein 1B (MAP1B) plays critical roles in neurite growth and synapse maturation during brain development. This protein is well expressed in the adult brain. However, its function in mature neurons remains unknown. We have used a genetically modified mouse model and shRNA techniques to assess the role of MAP1B at established synapses, bypassing MAP1B functions during neuronal development. Under these conditions, we found that MAP1B deficiency alters synaptic plasticity by specifically impairing long‐term depression (LTD) expression. Interestingly, this is due to a failure to trigger AMPA receptor endocytosis and spine shrinkage during LTD. These defects are accompanied by an impaired targeting of the Rac1 activator Tiam1 at synaptic compartments. Accordingly, LTD and AMPA receptor endocytosis are restored in MAP1B‐deficient neurons by providing additional Rac1. Therefore, these results indicate that the MAP1B‐Tiam1‐Rac1 relay is essential for spine structural plasticity and removal of AMPA receptors from synapses during LTD. This work highlights the importance of MAPs as signalling hubs controlling the actin cytoskeleton and receptor trafficking during plasticity in mature neurons.  相似文献   

13.
14.
Microtubule-associated protein 1B (MAP1B) is a neuronal protein involved in the stabilization of microtubules both in the axon and somatodendritic compartments. Acute, genetic inactivation of MAP1B leads to delayed axonal outgrowth, most likely due to changes in the post-translational modification of tubulin subunits, which enhances microtubule polymerization. Furthermore, MAP1B deficiency is accompanied by abnormal actin microfilament polymerization and dramatic changes in the activity of small GTPases controlling the actin cytoskeleton. In this work, we showed that MAP1B interacts with a guanine exchange factor, termed Tiam1, which specifically activates Rac1. These proteins co-segregated in neurons, and interact in both heterologous expression systems and primary neurons. We dissected the molecular domains involved in the MAP1B-Tiam1 interaction, and demonstrated that pleckstrin homology (PH) domains in Tiam1 are responsible for MAP1B binding. Interestingly, only the light chain 1 (LC1) of MAP1B was able to interact with Tiam1. Moreover, it was able to increase the activity of the small GTPase, Rac1. These results suggest that the interaction between Tiam1 and MAP1B, is produced by the binding of LC1 with PH domains in Tiam1. The formation of such a complex impacts on the activation levels of Rac1 confirming a novel function of MAP1B related with the control of small GTPases. These results also support the idea of cross-talk between cytoskeleton compartments inside neuronal cells.  相似文献   

15.
Microtubule-associated protein 1B (MAP1B) is a classical high molecular mass microtubule-associated protein expressed at high levels in the brain. It confers specific properties to neuronal microtubules and is essential for neuronal differentiation, brain development and synapse maturation. Misexpression of the protein contributes to the development of brain disorders in humans. However, despite numerous reports demonstrating the importance of MAP1B in regulation of the neuronal cytoskeleton during neurite extension and axon guidance, its mechanism of action is still elusive. Here we focus on the intrinsically disordered microtubule binding domain of the light chain of MAP1B. In order to obtain more detailed structural information about this domain we assigned NMR chemical shifts of backbone and aliphatic side chain atoms.  相似文献   

16.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

17.
Neuronal morphogenesis depends on the organization of cytoskeletal elements among which microtubules play a very important role. The organization of microtubules is controlled by the presence of microtubule-associated proteins (MAPs), the activity of which is modulated by phosphorylation and dephosphorylation. One of these MAPs is MAP1B, which is very abundant within growing axons of developing neurons where it is found phosphorylated by several protein kinases including CK2. The expression of MAP1B is notably decreased after neuronal maturation in parallel with a change in the localization of the protein, which becomes largely concentrated in neuronal cell bodies and dendrites. Interestingly, MAP1B remains highly phosphorylated at sites targeted by protein kinase CK2 in mature neurons.We have analyzed the expression and localization of CK2 catalytic subunits along neuronal development. CK2 subunit appears early during development whereas CK2 subunit appears within mature neurons at the time of dendrite maturation and synaptogenesis, in parallel with the change in the localization of MAP1B. CK2 subunit is found associated with microtubule preparations obtained from either grey matter or white matter from adult bovine brain, whereas CK2 subunit is highly enriched in microtubules obtained from grey matter. These results lend support to the hypothesis that CK2 subunit is concentrated in neuronal cell bodies and dendrites, where it associates with microtubules, thus contributing to the increased phosphorylation of MAP1B in this localization in mature neurons.  相似文献   

18.
19.
Microtubule associated proteins MAP1B and MAP2 are important components of the neuronal cytoskeleton. During early development of the brain, MAP1B (340 kDa) is present as two isoforms that differ in their level of phosphorylation, while MAP2 is expressed as a single high molecular weight isoform (MAP2B, 280 kDa) and a low molecular weight form (MAP2C, 70 kDa). In this study we examined and compared the sensitivities of MAP1B and MAP2, obtained from MT preparations and brain homogenates of young rats, to degradation by calcium-activated neutral protease, calpain II. We found that in MAPs prepared from microtubules the two isoforms of MAP1B had comparable sensitivity to calpain-mediated proteolysis. Similarly, the high and low molecular weight forms of MAP2 were equally sensitive to digestion by calpain. However, although both MAPs were very susceptible to calpain-mediated proteolysis, MAP1B was more resistant to degradation by calpain than MAP2. Furthermore, the endogenous degradation of MAPs in neonate brain homogenates was calcium-dependent and inhibited by leupeptin, and the pattern of degradation products for MAP1B and MAP2 was similar to that of calpain-mediated proteolysis. These data suggest that calpain can play a role in the regulation of MAPs levels during brain development, in relation to normal neuronal differentiation and disorders associated with neurodegeneration.  相似文献   

20.
MAP1B, a structural microtubule (MT)‐associated protein highly expressed in developing neurons, plays a key role in neurite and axon extension. However, not all molecular mechanisms by which MAP1B controls MT dynamics during these processes have been revealed. Here, we show that MAP1B interacts directly with EB1 and EB3 (EBs), two core ‘microtubule plus‐end tracking proteins’ (+TIPs), and sequesters them in the cytosol of developing neuronal cells. MAP1B overexpression reduces EBs binding to plus‐ends, whereas MAP1B downregulation increases binding of EBs to MTs. These alterations in EBs behaviour lead to changes in MT dynamics, in particular overstabilization and looping, in growth cones of MAP1B‐deficient neurons. This contributes to growth cone remodelling and a delay in axon outgrowth. Together, our findings define a new and crucial role of MAP1B as a direct regulator of EBs function and MT dynamics during neurite and axon extension. Our data provide a new layer of MT regulation: a classical MAP, which binds to the MT lattice and not to the end, controls effective concentration of core +TIPs thereby regulating MTs at their plus‐ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号