首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蚜虫是我国各地玉米植株上的重要刺吸类害虫。为了进一步阐述该虫的发生与环境之间的关系,以及其在转基因抗性玉米上的空间分布,本文在田间系统调查蚜虫种群动态的基础上,使用多元回归分析法、Iwao回归分析法和5种常用指标参数法,探明了玉米田蚜虫发生与环境因素之间相关的数学模型,以及在常规玉米和抗性玉米植株上的空间分布。结果表明:江苏扬州地区两类不同玉米植株上发生的蚜虫以玉米蚜为主,玉米蚜虫的发生与当日最低气温关系最密切;玉米蚜虫在玉米植株上部的分布数量可达70%~80%,其全株玉米上的蚜量(y)与玉米植株上部1/3上的蚜量(x)关系为y=1.33x;玉米蚜虫在植株上的分布为聚集分布,其聚集由自身特性和环境因素共同确定。本研究为开展转基因玉米田蚜虫的测报防控提供了重要依据。  相似文献   

2.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

3.
Quantitative data on modes of transmission are a crucial element in understanding the ecology of microorganisms associated with animals. We investigated the transmission patterns of a gamma-proteobacterium informally known as pea aphid Bemisia-like symbiont (PABS), also known as T-type, which is widely but not universally distributed in natural populations of the pea aphid, Acyrthosiphon pisum. The vertical transmission of PABS to asexual and sexual morphs and sexually produced eggs was demonstrated by a diagnostic PCR-based assay, and the maximum estimated failure rate was 2%. Aphids naturally lacking PABS acquired PABS bacteria administered via the diet, and the infection persisted by vertical transmission for at least three aphid generations. PABS was also detected in two of five aphid honeydew samples tested and in all five siphuncular fluid samples tested but in none of 15 samples of salivary secretions from PABS-positive aphids. However, PABS-negative aphids did not acquire PABS when they were cocultured with PABS-positive aphids; the maximal estimated level of horizontal transmission was 18%. A deterministic model indicated that the force of infection by a horizontal transmission rate of 3% is sufficient to maintain a previously described estimate of the prevalence of PABS-positive aphids (37%), if the vertical transmission rate is 98%. We concluded that PABS infections in A. pisum can be maintained by high vertical transmission rates and occasional horizontal transmission, possibly via the oral route, in the absence of selection either for or against aphids bearing this bacterium.  相似文献   

4.
Aphid ecology and population dynamics are affected by a series of factors including behavioural responses to ecologically relevant chemical cues, capacity for population growth, and interactions with host plants and natural enemies. Using the aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae), we showed that these factors were affected by infection with Rhopalosiphum padi virus (RhPV). Uninfected aphids were attracted to odour of uninfected aphids on the host plant, an aggregation mechanism. However, infected aphids were not attracted, and neither infected nor uninfected aphids were attracted to infected aphids on the plant. Infected aphids did not respond to methyl salicylate, a cue denoting host suitability. Infected aphids were more behaviourally sensitive to aphid alarm pheromone, and left the host plant more readily in response to it. RhPV reduced the lifespan and population growth rate of the aphid. The predacious ladybird, Coccinella septempunctata (L.) (Coleoptera: Coccinellidae), consumed more infected aphids than uninfected aphids in a 24‐h period, and the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae) attacked more infected than uninfected aphids. However, the proportion of mummies formed was lower with infected aphids. The results represent further evidence that associated organisms can affect the behaviour and ecology of their aphid hosts.  相似文献   

5.
Quantitative data on modes of transmission are a crucial element in understanding the ecology of microorganisms associated with animals. We investigated the transmission patterns of a γ-proteobacterium informally known as pea aphid Bemisia-like symbiont (PABS), also known as T-type, which is widely but not universally distributed in natural populations of the pea aphid, Acyrthosiphon pisum. The vertical transmission of PABS to asexual and sexual morphs and sexually produced eggs was demonstrated by a diagnostic PCR-based assay, and the maximum estimated failure rate was 2%. Aphids naturally lacking PABS acquired PABS bacteria administered via the diet, and the infection persisted by vertical transmission for at least three aphid generations. PABS was also detected in two of five aphid honeydew samples tested and in all five siphuncular fluid samples tested but in none of 15 samples of salivary secretions from PABS-positive aphids. However, PABS-negative aphids did not acquire PABS when they were cocultured with PABS-positive aphids; the maximal estimated level of horizontal transmission was 18%. A deterministic model indicated that the force of infection by a horizontal transmission rate of 3% is sufficient to maintain a previously described estimate of the prevalence of PABS-positive aphids (37%), if the vertical transmission rate is 98%. We concluded that PABS infections in A. pisum can be maintained by high vertical transmission rates and occasional horizontal transmission, possibly via the oral route, in the absence of selection either for or against aphids bearing this bacterium.  相似文献   

6.
An aphid-borne bacterium allied to the secondary symbionts of whitefly   总被引:8,自引:0,他引:8  
Bacterial 16S rDNA amplified by PCR from the pea aphid Acyrthosiphon pisum included a sequence with >98% similarity to secondary symbionts in the whitefly Bemisia tabaci. The 'pea aphid Bemisia-like bacterium' (PABS) and B. tabaci secondary symbionts are estimated to have diverged 17-34 million years ago, a time considerably more recent than the common ancestor of aphids and whitefly and suggestive of horizontal transmission of this bacterial lineage. PABS was scored in both the gut and ovaries of aphids by PCR and identified as a small rod by in situ hybridisation. PABS was not universal in pea aphids: 2/3 laboratory strains and 13/35 of field aphids were PABS-positive. It is suggested that the incidence of PABS in pea aphids is determined by the balance between loss (processes may include occasional failure of vertical transmission and selection against PABS-positive aphids) and horizontal transfer between insects.  相似文献   

7.
The cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), is an important cotton pest in northern China, especially in the seedling stage of cotton. After large scale commercial use of transgenic Bt cotton, cotton aphids became one of the most important cotton pests. A 2‐year study was conducted to evaluate the role of four winter wheat varieties that were resistant or susceptible to wheat aphid, Sitobion avenae Fabricius (Homoptera: Aphididae), in conserving arthropod natural enemies and suppressing cotton aphids in a wheat–cotton relay intercropping system in northern China. The results indicated that wheat–cotton intercropping preserved and augmented natural enemies more than a monoculture of cotton. The density of natural enemies in cotton was significantly different among relay‐intercropping fields with different wheat varieties. The highest density of natural enemies and low cotton aphid populations were found in the treatment of cotton in relay intercropped with the wheat variety Lovrin10, which is susceptible to wheat aphid. The lowest density of predators and parasitoids associated with high cotton aphid populations were found with the wheat variety KOK1679, which is resistant to wheat aphid. The results showed that wheat varieties that are susceptible or moderately resistant to wheat aphid might reduce cotton aphids more effectively than an aphid‐resistant variety in the intercropping system by enhancing predators to suppress cotton aphids during the cotton seedling stage.  相似文献   

8.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

9.
The occurrence of a secondary bacterial symbiont (PASS) of pea aphid, Acyrthosiphon pisum (Harris), was detected by polymerase chain reaction (PCR) with specific nucleotide primers based on PASS 16S rDNA nucleotide sequences from over 80% (50/57) of clones of pea aphid collected from widely separated locations in California. PASS was also detected by PCR in both red and green phenotypes of rose aphid, Macrosiphum rosae (L.), but not in six other species of aphids examined, including blue alfalfa aphid (A. kondoi Shinji). The nucleotide sequences of the PCR-amplified, partial 16S rDNAs (1060 bp) from pea aphid and rose aphid were identical and 99.9% similar to the published 16S rDNA of PASS. PASS and a recently described new rickettsia of pea aphid (PAR) were transmitted by needle injection of hemolymph from positive pea aphid clones into negative clones and into blue alfalfa aphids. Both PASS and PAR were maintained in the offspring of some of the injected mother aphids via high rate of maternal transmission. Received: 18 September 1996 / Accepted: 30 September 1996  相似文献   

10.
The tomato Mi-1 gene confers resistance to root-knot nematodes (Meloidogyne spp.), potato aphids (Macrosiphum eluphorbiae), and whiteflies (Bemisia tabaci and B. tabaci biotype B). Resistance to potato aphid is developmentally regulated and is not associated with induction of a hypersensitive response. The NahG transgene that eliminates endogenous salicylic acid (SA) was used to test the role of the SA signaling pathway in the resistance mediated by Mi-1 to potato aphids. Aphids survived longer on NahG tomato plants than on wild type. However, aphid reproduction was not affected on NahG tomato. Aphid resistance in Mi-1 NahG plants was completely abolished and the phenotype was successfully rescued by application of BTH (benzo(1,2,3)-thiaiazole-7-carbothioic acid S-methyl ester), indicating that the SA signaling pathway is an important component of Mi-1-mediated aphid resistance. Using virus-induced gene silencing, one or more mitogen-activated protein kinase (MAPK) cascades required for Mi-1-mediated aphid resistance were identified. Silencing plants for MAPK kinase (LeMKK2) and MAPKs (LeMPK2 and LeMPK1, or LeMPK3) resulted in attenuation of Mi-1-mediated aphid resistance. These results further demonstrate that resistance gene-mediated signaling events against piercing-sucking insects are similar to those against other plant pathogens.  相似文献   

11.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

12.
1. Aphid natural enemies include not only predators and parasitoids but also pathogens, of which fungi are the most studied for biological control. While wing formation in aphids is induced by abiotic conditions, it is also affected by biotic interactions with their arthropod natural enemies. Wing induction via interactions with arthropod natural enemies is mediated by the increase in their physical contact when alarmed (pseudo‐crowding). Pathogenic fungi do not trigger this alarm behaviour in aphids and, therefore, no pseudo‐crowding occurs. 2. We hypothesise that, while pathogenic fungi will stimulate maternally induced wing formation, the mechanism is different and is influenced by pathogen specificity. We tested this hypothesis using two entomopathogenic fungi, Pandora neoaphidis and Beauveria bassiana, an aphid specialist and a generalist respectively, on the pea aphid, Acyrthosiphon pisum Harris. 3. We first demonstrate that pea aphids infected with either pathogen and maintained in groups on broad bean plants produced a higher proportion of winged morphs than uninfected control aphids. We then show that, when maintained in isolation, aphids infected with either pathogen also produced higher proportions of winged offspring than control aphids. There was no difference between P. neoaphidis and B. bassiana in their effects on wing induction in either experiment. 4. Unlike the effect of predators and parasitoids on pea aphid wing induction, the effect of pathogens is independent of physical contact with other aphids, suggesting that physiological cues induce wing formation in infected aphids. It is possible that aphids benefit from wing induction by escaping infected patches whilst pathogens may benefit through dispersion. Possible mechanisms of wing induction are discussed.  相似文献   

13.
Coincidental intraguild predation is expected to be less disruptive to biological control than omnivorous intraguild predation, and strong intraguild predation is not expected to occur in natural systems. Coincidental intraguild predation in a foodweb involving introduced pest and natural enemy species was examined to determine whether intraguild predation would be disruptive of biological control services in soybean agroecosystems. Introduced natural enemies are important regulators of soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), populations in North America. Seven-spotted lady beetles, Coccinella septempunctata L., and multicolored Asian lady beetles, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), are key predators of soybean aphid in North America while the chalcidoid wasp, Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae), is the most common parasitoid of soybean aphid in Ontario, Canada. Predation of parasitized soybean aphids at two stages (newly parasitized aphids and mummified aphids) by adults and third instar larvae of both C. septempunctata and H. axyridis was examined in laboratory experiments. In choice experiments, all stages of lady beetles preferred non-parasitized aphids over mummified aphids. In cage experiments, third instar larvae and male and female adults of both lady beetles did not discriminate between newly parasitized and non-parasitized aphids. The influence of coincidental intraguild predation on the efficacy of parasitoids as biological control agents, and implications for soybean aphid management decisions based on natural enemies, are discussed.  相似文献   

14.
Abstract.— Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria ( Buchnera ) supported long-term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon , sequences from four mitochondrial, one nuclear, and one endosymbiont gene ( trpB ) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino-Hasegawa test and the likelihood-ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.  相似文献   

15.
We used aphids (Aphidae) as a representative hemimetabolous host family to investigate patterns of parasitoid (Aphidiine) assemblage size. The aphidiine assemblages from 477 aphid species were used to estimate average assemblage size and the influence of eight ecological and taxonomic variables. Aphids species support an average of 1.7 aphidiine species. Aphid subfamily and invasion status (native or exotic) were the most important determinants of parasitoid richness, explaining 28% of the deviance in aphidiine assemblage size. Aphids within the largest aphid subfamily, the Aphidinae, support larger parasitoid assemblages than those in other subfamilies. Parasitoid diversity was also highest on exotic aphid hosts (within the Aphidinae) and on hosts in developed habitats (agricultural or urban), though the latter effect is weak. Patterns related to aphid food plant architecture were influenced by an interaction with aphid invasion status; parasitoid diversity drops with increasing architectural complexity on exotic aphids, whereas the diversities on native aphid hosts are similar on different plant types. Weak effects were also found for aphid food plant alternation (whether or not aphids switch hosts seasonally) and climate (annual range in temperature); alternating aphids support more parasitoids than non-alternating hosts, and parasitoid assemblage size is lowest in warm climates. Taxonomic isolation of aphids at the generic level showed no significant relationship with parasitoid diversity. Finally, in contrast to parasitoid assemblages on holometabolous hosts, sample size effects were weak for aphids, possibly due to the narrow host ranges of aphidiines. Received: 22 November 1997 / Accepted: 7 March 1998  相似文献   

16.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

17.
The response of pea aphids, Acyrthosiphon pisum, to aphid alarm pheromone was not modified by infection with Beauveria bassiana. Approximately 50% of uninfected and infected aphids responded to synthetic alarm pheromone. The simulated attack of aphids infected with B. bassiana did not elicit a response in uninfected aphids. Preliminary air entrainment experiments of both uninfected aphids and aphids at different stages of B. bassiana (generalist pathogen) or P. neoaphidis (obligate pathogen of aphids) demonstrated that B. bassiana infected aphids produced less alarm pheromone than uninfected aphids and, conversely, P. neoaphidis infected aphids produced more alarm pheromone than uninfected aphids. These results are discussed with particular emphasis on the different life history strategies of these two pathogens. We hypothesise that the obligate, specialist pathogen, P. neoaphidis, is under greater selection pressure to increase pathogen transmission and survival resulting in modified host behaviour, than the generalist pathogen, B. bassiana.  相似文献   

18.
19.
The impacts of infestation by the green peach aphid (Myzus persicae) on sweetpotato whitefly (Bemisia tabaci) settling on tomato were determined in seven separate experiments with whole plants and with detached leaves through manipulation of four factors: durations of aphid infestation, density of aphids, intervals between aphid removal after different durations of infestation and the time of whitefly release, and leaf positions on the plants. The results demonstrated that B. tabaci preferred to settle on the plant leaves that had not been infested by aphids when they had a choice. The plant leaves on which aphids were still present (direct effect) had fewer whiteflies than those previously infested by aphids (indirect effect). The whiteflies were able to settle on the plant which aphids had previously infested, and also could settle on leaves with aphids if no uninfested plants were available. Tests of direct factors revealed that duration of aphid infestation had a stronger effect on whitefly landing preference than aphid density; whitefly preference was the least when 20 aphids fed on the leaves for 72 h. Tests of indirect effects revealed that the major factor that affected whitefly preference for a host plant was the interval between the time of aphid removal after infestation and the time of whitefly release. The importance of the four factors that affected the induced plant defense against whiteflies can be arranged in the following order: time intervals between aphid removal and whitefly release > durations of aphid infestation > density of aphids > leaf positions on the plants. In conclusion, the density of aphid infestation and time for which they were feeding influenced the production of induced compounds by tomatoes, the whitefly responses to the plants, and reduced interspecific competition.  相似文献   

20.
扁蚜亚科昆虫虫瘿多样性研究(半翅目,蚜科)   总被引:2,自引:0,他引:2  
虫瘿是蚜虫诱导植物异速生长的结果,虫瘿作为蚜虫重要的延伸特征,对蚜虫系统分类、系统发育关系、以及起源演化等研究具有非常重要的作用.而且虫瘿的形态结构、着生部位等在蚜虫的物种间存在非常丰富的多样性,是蚜虫重要的生物学特征,也是物种鉴定的重要依据之一.本文在已有标本采集记录和资料的基础上,从结瘿的植物、虫瘿着生部位、形态结构及类型等4个方面对扁蚜亚科虫瘿的多样性进行了系统研究.结果表明该亚科蚜虫大多都在原生寄主上形成虫瘿,个别属及种可在次生寄主上成瘿;虫瘿在类型上有虫瘿和伪虫瘿之别;在着生部位上,有叶片、叶脉、叶柄、小枝、粗枝等;虫瘿的形状也十分多样,有管状、袋状、球状、半球形、刺球状、纺锤形、圆锥形、分支状、香蕉束状等;在结构上既有单室、多室之分,也有开放型、封闭型之别.对于虫瘿多样性的研究,可为虫瘿演化规律的探讨提供重要信息,也是基于虫瘿进行物种鉴定的重要基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号