首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
卢阳  龙鸿 《植物学报》2015,50(3):331-336
拟南芥(Arabidopsis thaliana)的营养生长可以分为2个阶段: 幼龄期与成熟期。由幼龄期向成熟期的转变(VPC)与叶片的形态学特征、茎顶端分生组织(SAM)形状、远轴面表皮毛的出现以及SPL家族转录因子表达水平的变化相关。研究表明, 造成这种转变的信号来源于叶原基。该研究利用2种莲座叶数目改变了的突变体和对野生型切除叶片的方法, 分析了叶片数目对VPC的影响。结果表明, 莲座叶数目的减少推迟了VPC的发生; 而莲座叶数目增多突变体amp1-1并未使VPC的发生提前, 推测叶源信号的产生受到了光合作用的影响。  相似文献   

3.
Young organisms have relatively strong resistance to diseases and adverse conditions. When confronted with adversity, the process of development is delayed in plants. This phenomenon is thought to result from the rebalancing of energy, which helps plants to coordinate the relationship between development and stress tolerance; however, the molecular mechanism underlying this phenomenon remains mysterious. In this study, we found that miR156 integrates environmental signals to ensure timely flowering, thus enabling the completion of breeding. Under stress conditions, miR156 is induced to maintain the plant in the juvenile state for a relatively long period of time, whereas under favorable conditions, miR156 is suppressed to accelerate the developmental transition. Blocking the miR156 signaling pathway in Arabidopsis thaliana with 35S::MIM156 (via target mimicry) increased the sensitivity of the plant to stress treatment, whereas overexpression of miR156 increased stress tolerance. In fact, this mechanism is also conserved in Oryza sativa (rice). We also identified downstream genes of miR156, i.e. SQUAMOSA PROMOTER BINDING PROTEINLIKE 9 (SPL9) and DIHYDROFLAVONOL‐4‐REDUCTASE (DFR), which take part in this process by influencing the metabolism of anthocyanin. Our results uncover a molecular mechanism for plant adaptation to the environment through the miR156‐SPLs‐DFR pathway, which coordinates development and abiotic stress tolerance.  相似文献   

4.
5.
MicroRNAs (miRNAs) are a class of endogenous small RNAs that play important regulatory roles in both animals and plants, miRNA genes have been intensively studied in animals, but not in plants. In this study, we adopted a homology search approach to identify homologs of previously validated plant miRNAs in Arabidopsis thaliana and Oryza sativa. We identified 20 potential miRNA genes in Arabidopsis and 40 in O. sativa, providing a relatively complete enumeration of family members for these miRNAs in plants. In addition, a greater number of Arabidopsis miRNAs (MIR168, MIR159 and MIR172) were found to be conserved in rice. With the novel homologs, most of the miRNAs have closely related fellow miRNAs and the number of paralogs varies in the different miRNA families. Moreover, a probable functional segment highly conserved on the elongated stem of pre-miRNA fold-backs of MIR319 and MIR159 family was identified. These results support a model of variegated miRNA regulation in plants, in which miRNAs with different functional elements on their pre-miRNA fold-backs can differ in their function or regulation, and closely related miRNAs can be diverse in their specificity or competence to downregulate target genes. It appears that the sophisticated regulation of miRNAs can achieve complex biological effects through qualitative and quantitative modulation of gene expression profiles in plants.  相似文献   

6.
7.

Background

The change from juvenile to mature phase in woody plants is often accompanied by a gradual loss of rooting ability, as well as by reduced microRNA (miR) 156 and increased miR172 expression.

Results

We characterized the population of miRNAs of Eucalyptus grandis and compared the gradual reduction in miR156 and increase in miR172 expression during development to the loss of rooting ability. Forty known and eight novel miRNAs were discovered and their predicted targets are listed. The expression pattern of nine miRNAs was determined during adventitious root formation in juvenile and mature cuttings. While the expression levels of miR156 and miR172 were inverse in juvenile and mature tissues, no mutual relationship was found between high miR156 expression and rooting ability, or high miR172 expression and loss of rooting ability. This is shown both in E. grandis and in E. brachyphylla, in which explants that underwent rejuvenation in tissue culture conditions were also examined.

Conclusions

It is suggested that in these Eucalyptus species, there is no correlation between the switch of miR156 with miR172 expression in the stems and the loss of rooting ability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-524) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
Seeds are dormant and desiccated structures, filled with storage products to be used after germination. These properties are determined by the maturation program, which starts, in Arabidopsis thaliana, mid‐embryogenesis, at about the same time and developmental stage in all the seeds in a fruit. The two factors, chronological and developmental time, are closely entangled during seed development, so their relative contribution to the transition to maturation is not well understood. It is also unclear whether that transition is determined autonomously by each seed or whether it depends on signals from the fruit. The onset of maturation follows the cellularization of the endosperm, and it has been proposed that there exists a causal relationship between both processes. We explored all these issues by analyzing markers for maturation in Arabidopsis mutant seeds that develop at a slower pace, or where endosperm cellularization happens too early, too late, or not at all. Our data show that the developmental stage of the embryo is the key determinant of the initiation of maturation, and that each seed makes that transition autonomously. We also found that, in contrast with previous models, endosperm cellularization is not required for the onset of maturation, suggesting that this transition is independent of the hexose/sucrose ratio in the seed. Our observations indicate that the mechanisms that control endosperm cellularization, embryo growth, and embryo maturation act independently of each other.  相似文献   

11.
DOUBLE-STRANDED RNA BINDING (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets.1 Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNAs.  相似文献   

12.
13.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

14.
The asymmetric leaves 1 ( as1 ) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED -like homeobox ( KNOX ) genes ( BP , KNAT2 and KNAT6 ) and ETTIN / ARF3 , is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2 . Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.  相似文献   

15.
16.
Glutathione peroxidases (GPXs) are a group of enzymes that protect cells against oxidative damage generated by reactive oxygen species (ROS). The presence of GPXs in plants has been reported by several groups, but the roles of individual members of this family in a single plant species have not been studied. A family of seven related proteins named AtGPX1- AtGPX7 in Arabidopsis was identified, and the genomic organization of this family was reported. The putative subcellular localizations of the encoded proteins are the cytosol, chloroplast, mitochondria, and endoplasmic reticulum. Expressed sequence tags (ESTs) for all the genes except AtGPX7 were identified. Expression analysis of AtGPX genes in Arabidopsis tissues was performed, and different patterns were detected. Interestingly, several genes were up-regulated coordinately in response to abiotic stresses. AtGPX6, like human phospholipid hydroperoxide GPX (PHGPX), possibly encodes mitochondrial and cytosolic isoforms by alternative initiation. In addition, this gene showed the strongest responses under most abiotic stresses tested. AtGPX6::GUS analysis in transgenic Arabidopsis showed that AtGPX6 is highly expressed throughout development in most tissues, thus supporting an important role for this gene in protection against oxidative damage. The different effects of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and auxin on the expression of the genes indicate that the AtGPX family is regulated by multiple signaling pathways. Analysis of the upstream region of the AtGPX genes revealed the presence of multiple conserved motifs, and some of them resembled antioxidant-responsive elements found in plant and human promoters. The potential regulatory role of specific sequences is discussed.  相似文献   

17.
During their life cycle, higher plants pass through a series of growth phases that are characterized by the production of morphologically distinct vegetative and reproductive organs and by different growth patterns. Three major phases have been described in Arabidopsis: juvenile vegetative, adult vegetative, and reproductive. In this report we describe a novel, phase-specific mutant in Arabidopsis, compact inflorescence (cif). The most apparent aspect of the cif phenotype is a strong reduction in the elongation of internodes in the inflorescence, resulting in the formation of a floral cluster at the apical end of all reproductive shoots. Elongation and expansion of adult vegetative rosette leaves are also compromised in mutant plants. The onset of the cif trait correlates closely with morphological changes marking the phase transition from juvenile to adult, and mutant plants produce normal flowers and are fully fertile. Hence the cif phenotype appears to be adult vegetative phase-specific. Histological sections of mutant inflorescence internodes indicate normal tissue specification, but reduced cell elongation compared to wild-type. compact inflorescence is inherited as a two-gene trait involving the action of a recessive and a dominant locus. These two cif genes appear to be key components of a growth regulatory pathway that is closely linked to phase change, and specifies critical aspects of plant growth and architecture including inflorescence internode length.  相似文献   

18.
The involvement of calcium signaling during cold-induction of the kin genes of Arabidopsis thaliana (L.) Heynh. was examined. Treatments with chemicals which either chelate extracellular calcium (EGTA) or block the plasma-membrane calcium channels (La3+, Gd3+) inhibited cold acclimation as well as kin gene expression. Ruthenium red, an inhibitor of calcium release from intracellular stores partially inhibited kin gene expression and development of freezing tolerance. An inhibitor of calcium-dependent protein kinases (CDPKs) and calmodulin prevented cold acclimation as well as the cold induction of kin genes. Using restriction fragment length polymorphism-coupled domain-directed differential display, five CDPK clones were identified which showed differential regulation by cold. The amplified fragments showed homology to known plant CDPKs. The involvement of calcium and calcium-binding proteins in cold acclimation of A. thaliana is discussed. Received: 28 November 1996 / Accepted: 5 May 1997  相似文献   

19.
The relationships between changes in irreversible and reversible organ length, turgor (P), osmotic pressure (pi), and metabolic activity of the cells were investigated in intact coleoptiles of rye seedlings ( Secale cereale L.) that were either grown in darkness or irradiated with continuous white light. Cessation of growth at day 4 after sowing was associated with an apparent mechanical stiffening of the cell walls. Turgor pressure was measured in epidermal and mesophyll cells with a miniaturized pressure probe. No gradient of turgor was found between the peripheral and internal cells. In juvenile (growing) coleoptiles, average turgor was 0.60 MPa and a negative water potential (P - pi) was established in these cells. Upon emergence of the primary leaf, turgor declined, but P was maintained at values of 0.43 and 0.52 MPa in 7-day-old light- and dark-grown coleoptiles, respectively. Water potential in non-growing cells approached zero. The rate of dark respiration and elongation growth were not correlated. Surgical removal of the mature coleoptile revealed that the erect position of the 7-day-old shoot was dependent on the presence of this sturdy, turgid organ sheath. It is concluded that, during the first week of seedling development, the pierced, metabolically active coleoptile fulfills an essential function as an elastic basal tube for the juvenile shoot.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号