首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.  相似文献   

2.
Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD. To evaluate whether CDK inhibition approach will translate into efficacy in an orthologous model of ADPKD, we tested R-roscovitine and its derivative S-CR8 in a model with a conditionally inactivated Pkd1 gene (Pkd1 cKO). Similar to ADPKD, Pkd1 cKO mice developed renal and hepatic cysts. Treatment of Pkd1 cKO mice with R-roscovitine and its more potent and selective analog S-CR8 significantly reduced renal and hepatic cystogenesis and attenuated kidney function decline. Mechanism of action studies demonstrated effective blockade of cell cycle and proliferation and reduction of apoptosis. Together, these data validate CDK inhibition as a novel and effective approach for the treatment of ADPKD.  相似文献   

3.
4.
Although translational research into autosomal dominant polycystic kidney disease (ADPKD) and its pathogenesis has made considerable progress, there is presently lack of standardized animal model for preclinical trials. In this study, we developed an orthologous mouse model of human ADPKD by cross‐mating Pkd2 conditional‐knockout mice (Pkd2f3) to Cre transgenic mice in which Cre is driven by a spectrum of kidney‐related promoters. By systematically characterizing the mouse model, we found that Pkd2f3/f3 mice with a Cre transgene driven by the mouse villin‐1 promoter (Vil‐Cre;Pkd2f3/f3) develop overt cysts in the kidney, liver and pancreas and die of end‐stage renal disease (ESRD) at 4–6 months of age. To determine whether these Vil‐Cre;Pkd2f3/f3 mice were suitable for preclinical trials, we treated the mice with the high‐dose mammalian target of rapamycin (mTOR) inhibitor rapamycin. High‐dose rapamycin significantly increased the lifespan, lowered the cystic index and kidney/body weight ratio and improved renal function in Vil‐Cre;Pkd2f3/f3 mice in a time‐ and dose‐dependent manner. In addition, we further found that rapamycin arrested aberrant epithelial‐cell proliferation in the ADPKD kidney by down‐regulating the cell‐cycle‐associated cyclin‐dependent kinase 1 (CDK1) and cyclins, namely cyclin A, cyclin B, cyclin D1 and cyclin E, demonstrating a direct link between mTOR signalling changes and the polycystin‐2 dysfunction in cystogenesis. Our newly developed ADPKD model provides a practical platform for translating in vivo preclinical results into ADPKD therapies. The newly defined molecular mechanism by which rapamycin suppresses proliferation via inhibiting abnormally elevated CDK1 and cyclins offers clues to new molecular targets for ADPKD treatment.  相似文献   

5.
Overexpression of PKD1 causes polycystic kidney disease   总被引:5,自引:0,他引:5       下载免费PDF全文
The pathogenetic mechanisms underlying autosomal dominant polycystic kidney disease (ADPKD) remain to be elucidated. While there is evidence that Pkd1 gene haploinsufficiency and loss of heterozygosity can cause cyst formation in mice, paradoxically high levels of Pkd1 expression have been detected in the kidneys of ADPKD patients. To determine whether Pkd1 gain of function can be a pathogenetic process, a Pkd1 bacterial artificial chromosome (Pkd1-BAC) was modified by homologous recombination to solely target a sustained Pkd1 expression preferentially to the adult kidney. Several transgenic lines were generated that specifically overexpressed the Pkd1 transgene in the kidneys 2- to 15-fold over Pkd1 endogenous levels. All transgenic mice reproducibly developed tubular and glomerular cysts and renal insufficiency and died of renal failure. This model demonstrates that overexpression of wild-type Pkd1 alone is sufficient to trigger cystogenesis resembling human ADPKD. Our results also uncovered a striking increased renal c-myc expression in mice from all transgenic lines, indicating that c-myc is a critical in vivo downstream effector of Pkd1 molecular pathways. This study not only produced an invaluable and first PKD model to evaluate molecular pathogenesis and therapies but also provides evidence that gain of function could be a pathogenetic mechanism in ADPKD.  相似文献   

6.
Renal cell carcinoma (RCC) is the most common type of renal tumor, and the clear cell renal cell carcinoma (ccRCC) is the most frequent subtype. In this study, our aim is to identify potential biomarkers that could effectively predict the prognosis and progression of ccRCC. First, we used The Cancer Genome Atlas (TCGA) RNA-sequencing (RNA-seq) data of ccRCC to identify 2370 differentially expressed genes (DEGs). Second, the DEGs were used to construct a coexpression network by weighted gene coexpression network analysis (WGCNA). Moreover, we identified the yellow module, which was strongly related to the histologic grade and pathological stage of ccRCC. Then, the functional annotation of the yellow module and single-samples gene-set enrichment analysis of DEGs were performed and mainly enriched in cell cycle. Subsequently, 18 candidate hub genes were screened through WGCNA and protein–protein interaction (PPI) network analysis. After verification of TCGA’s ccRCC data set, Gene Expression Omnibus (GEO) data set (GSE73731) and tissue validation, we finally identified 15 hub genes that can actually predict the progression of ccRCC. In addition, by using survival analysis, we found that patients of ccRCC with high expression of each hub gene were more likely to have poor prognosis than those with low expression. The receiver operating characteristic curve showed that each hub gene could effectively distinguish between localized and advanced ccRCC. In summary, our study indicates that 15 hub genes have great predictive value for the prognosis and progression of ccRCC, and may contribute to the exploration of the pathogenesis of ccRCC.  相似文献   

7.
8.
Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and is characterized by progressive growth of fluid-filled cysts. Growth factors binding to receptor tyrosine kinases (RTKs) stimulate cell proliferation and cyst growth in PKD. Nintedanib, a triple RTK inhibitor, targets the vascular endothelial growth-factor receptor (VEGFR), platelet-derived growth-factor receptor (PDGFR), and fibroblast growth-factor receptor (FGFR), and is an approved drug for the treatment of non-small-cell lung carcinoma and idiopathic lung fibrosis. To determine if RTK inhibition using nintedanib can slow ADPKD progression, we tested its effect on human ADPKD renal cyst epithelial cells and myofibroblasts in vitro, and on Pkd1f/fPkhd1Cre and Pkd1RC/RC, orthologous mouse models of ADPKD. Nintedanib significantly inhibited cell proliferation and in vitro cyst growth of human ADPKD renal cyst epithelial cells, and cell viability and migration of human ADPKD renal myofibroblasts. Consistently, nintedanib treatment significantly reduced kidney-to-body-weight ratio, renal cystic index, cystic epithelial cell proliferation, and blood-urea nitrogen levels in both the Pkd1f/fPkhd1Cre and Pkd1RC/RC mice. There was a corresponding reduction in ERK, AKT, STAT3, and mTOR activity and expression of proproliferative factors, including Yes-associated protein (YAP), c-Myc, and Cyclin D1. Nintedanib treatment significantly reduced fibrosis in Pkd1RC/RC mice, but did not affect renal fibrosis in Pkd1f/fPkhd1Cre mice. Overall, these results suggest that nintedanib may be repurposed to effectively slow cyst growth in ADPKD.Subject terms: Growth factor signalling, Polycystic kidney disease  相似文献   

9.
Colorectal cancer (CRC) ranks as one of the most common malignant tumors worldwide. Its mortality rate has remained high in recent years. Therefore, the aim of this study was to identify significant differentially expressed genes (DEGs) involved in its pathogenesis, which may be used as novel biomarkers or potential therapeutic targets for CRC. The gene expression profiles of GSE21510, GSE32323, GSE89076, and GSE113513 were downloaded from the Gene Expression Omnibus (GEO) database. After screening DEGs in each GEO data set, we further used the robust rank aggregation method to identify 494 significant DEGs including 212 upregulated and 282 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by DAVID and the KOBAS online database, respectively. These DEGs were shown to be significantly enriched in different cancer-related functions and pathways. Then, the STRING database was used to construct the protein–protein interaction network. The module analysis was performed by the MCODE plug-in of Cytoscape based on the whole network. We finally filtered out seven hub genes by the cytoHubba plug-in, including PPBP, CCL28, CXCL12, INSL5, CXCL3, CXCL10, and CXCL11. The expression validation and survival analysis of these hub genes were analyzed based on The Cancer Genome Atlas database. In conclusion, the robust DEGs associated with the carcinogenesis of CRC were screened through the GEO database, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for CRC.  相似文献   

10.
Autosomal dominant polycystic kidney disease (ADPKD), the most common hereditary disease affecting the kidneys, is caused in 85% of cases by mutations in the PKD1 gene. The protein encoded by this gene, polycystin-1, is a renal epithelial cell membrane mechanoreceptor, sensing morphogenetic cues in the extracellular environment, which regulate the tissue architecture and differentiation. However, how such mutations result in the formation of cysts is still unclear. We performed a precise characterization of mesenchymal differentiation using PAX2, WNT4 and WT1 as a marker, which revealed that impairment of the differentiation process preceded the development of cysts in Pkd1(-/-) mice. We performed an in vitro organ culture and found that progesterone and a derivative thereof facilitated mesenchymal differentiation, and partially prevented the formation of cysts in Pkd1(-/-) kidneys. An injection of progesterone or this derivative into the intraperitoneal space of pregnant females also improved the survival of Pkd1(-/-) embryos. Our findings suggest that compounds which enhance mesenchymal differentiation in the nephrogenesis might be useful for the therapeutic approach to prevent the formation of cysts in ADPKD patients.  相似文献   

11.
12.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most commonly inherited renal diseases. At least two genes, PKD2 and PKD1 are implicated in the development of this disease. Our pathogenetic studies showed that the human and murine polycystic kidney disease (PKD) involves failure to switch out of a renal developmental program. We have thus undertaken a detailed comparative expression analysis of Pkd2 and Pkd1 from the morula stage to adulthood. Pkd2 expression was detected as early as the morula and blastocyst stages as observed for Pkd1. Strong Pkd2 expression, similar to Pkd1, was displayed in all mesenchymal and cartilaginous tissues during mouse development. However major differences in Pkd2 expression in comparison to Pkd1 were identified. First, in contrast to Pkd1, the neural crest cell-derived tissues displayed a low to undetectable Pkd2 expression at all ages. Second, no increase in Pkd2 expression was detected during mesenchymal condensation. Third, high Pkd2 expression in the kidneys was localized mainly to the tubular epithelium of the cortical region from murine development to adulthood.  相似文献   

13.
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder characterized by kidney cyst growth often resulting in end-stage renal disease. There is growing attention on understanding the role of impaired autophagy in ADPKD. Trehalose (TRE) has been shown to increase both protein stability and aggregate clearance and induce autophagy in neurodegenerative diseases. TRE treatment in wild type mice compared to vehicle resulted in increased expression in the kidney of Atg12–5 complex and increased Rab9a, autophagy-related proteins that play a role in the formation of autophagosomes. Thus, the aim of the study was to determine the effect of TRE on cyst growth and autophagy-related proteins, in the hypomorphic Pkd1RC/RC mouse model of ADPKD. Pkd1RC/RC mice were treated 2% TRE in water from days 50 to 120 of age. TRE did not slow cyst growth or improve kidney function or affect proliferation and apoptosis in Pkd1RC/RC kidneys. In Pkd1RC/RC vs. wild type kidneys, expression of the Atg12–5 complex was inhibited by TRE resulting in increased free Atg12 and TRE was unable to rescue the deficiency of the Atg12–5 complex. Rab9a was decreased in Pkd1RC/RC vs. wild type kidneys and unaffected by TRE. The TRE-induced increase in p62, a marker of autophagic cargo, that was seen in normal kidneys was blocked in Pkd1RC/RC kidneys. In summary, the autophagy phenotype in Pkd1RC/RC kidneys was characterized by decreases in crucial autophagy-related proteins (Atg12–5 complex, Atg5, Atg16L1), decreased Rab9a and increased mTORC1 (pS6S240/244, pmTORS2448) proteins. TRE increased Atg12–5 complex, Rab9a and p62 in normal kidneys, but was unable to rescue the deficiency in autophagy proteins or suppress mTORC1 in Pkd1RC/RC kidneys and did not protect against cyst growth.  相似文献   

14.

Background

Some microRNAs (miRNAs) are abnormally expressed in cancer and contribute to tumorigenesis. In the present study, we investigated the role of miR-506 in clear cell renal cell carcinoma (ccRCC).

Methods

miR-506 expression was detected in renal cancer cell lines 786-O, ACHN, Caki-1, and Caki-2 and ccRCC specimens by quantitative real-time-PCR. We assessed the association of miR-506 expression with pathology and prognosis in ccRCC patients. We over-expressed and knocked-down miR-506 expression in two renal cancer cell lines, 786-O and ACHN, and assessed the impact on cell proliferation, migration and invasion. A luciferase reporter assay was conducted to confirm the target gene of miR-506 in renal cancer cell lines.

Results

miR-506 was significantly down-regulated in renal cancer cell lines and ccRCC specimens. Low miR-506 expression in ccRCC specimens was associated with an advanced clinical stage and poor prognosis. miR-506 expression was an independent prognostic marker of overall ccRCC patient survival in a multivariate analysis. Over-expression of miR-506 in renal cancer cells decreased cell growth and metastasis, In contrast, down-regulation of miR-506 expression promoted renal cancer cell growth and metastasis. FLOT1, a potential target gene of miR-506, was inversely correlated with miR-506 expression in ccRCC tissues. Consistent with the effect of miR-506, knockdown of FLOT1 by siRNA inhibited cell malignant behaviors. Rescue of FLOT1 expression partially restored the effects of miR-506.

Conclusions

miR-506 exerts its anti-cancer function by directly targeting FLOT1 in renal cancer, indicating a potential novel therapeutic role in renal cancer treatment.  相似文献   

15.
Renal clear cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, which has strong immunogenicity. A comprehensive study of the role of immune-related genes (IRGs) in ccRCC is of great significance in finding ccRCC treatment targets and improving patient prognosis. In this study, we comprehensively analyzed the expression of IRGs in ccRCC based on The Cancer Genome Atlas datasets. The mechanism of differentially expressed IRGs in ccRCC was analyzed by bioinformatics. In addition, Cox regression analysis was used to screen prognostic related IRGs from differentially expressed IRGs. We also identified a four IRGs signature consisting of four IRGs (CXCL2, SEMA3G, PDGFD, and UCN) through lasso regression and multivariate Cox regression analysis. Further analysis results showed that the four IRGs signature could effectively predict the prognosis of patients with ccRCC, and its predictive power is independent of other clinical factors. In addition, the correlation analysis of immune cell infiltration showed that this four IRGs signature could effectively reflect the level of immune cell infiltration of ccRCC. We also found that the expression of immune checkpoint genes CTLA-4, LAG3, and PD-1 in the high-risk group was higher than that in the low-risk group. Our research revealed the role of IRGs in ccRCC, and developed a four IRGs signature that could be used to evaluate the prognosis of patients with ccRCC, which will help to develop personalized treatment strategies for patients with ccRCC and improve their prognosis. In addition, these four IRGs may be effective therapeutic targets for ccRCC.  相似文献   

16.
Thyroid cancer is a common endocrine malignancy with a rapidly increasing incidence worldwide. Although its mortality is steady or declining because of earlier diagnoses, its survival rate varies because of different tumour types. Thus, the aim of this study was to identify key biomarkers and novel therapeutic targets in thyroid cancer. The expression profiles of GSE3467, GSE5364, GSE29265 and GSE53157 were downloaded from the Gene Expression Omnibus database, which included a total of 97 thyroid cancer and 48 normal samples. After screening significant differentially expressed genes (DEGs) in each data set, we used the robust rank aggregation method to identify 358 robust DEGs, including 135 upregulated and 224 downregulated genes, in four datasets. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses of DEGs were performed by DAVID and the KOBAS online database, respectively. The results showed that these DEGs were significantly enriched in various cancer-related functions and pathways. Then, the STRING database was used to construct the protein–protein interaction network, and modules analysis was performed. Finally, we filtered out five hub genes, including LPAR5, NMU, FN1, NPY1R, and CXCL12, from the whole network. Expression validation and survival analysis of these hub genes based on the The Cancer Genome Atlas database suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for thyroid cancer, which will be useful for further clinical applications in thyroid cancer diagnosis, prognosis and targeted therapy.  相似文献   

17.
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC.  相似文献   

18.
Clear cell renal cell carcinoma (ccRCC) is a highly aggressive and common pathological subtype of renal cancer. This cancer is characterized by biallelic inactivation of the von Hippel–Lindau (VHL) tumor suppressor gene, which leads to the accumulation of hypoxia-inducible factors (HIFs). Although therapies targeted at HIFs can significantly improve survival, nearly all patients with advanced ccRCC eventually succumb to the disease. Thus, additional oncogenic events are thought to be involved in the development of ccRCC tumors. In this study, we investigated the role of RASSF6 in ccRCC. Downregulation of RASSF6 was commonly observed in primary tumors relative to matched adjacent normal tissues. Moreover, functional studies established that ectopic re-expression of RASSF6 in ccRCC cells inhibited cell proliferation, clonogenicity, and tumor growth in mice, whereas silencing of RASSF6 dramatically enhanced cell proliferation in vitro and in vivo. Mechanistic investigation suggested that RASSF6 triggers p21Cip1/Waf1 accumulation to induce G1 cell cycle arrest and promote apoptosis upon exposure to pro-apoptotic agents, and both of these mechanisms appear to be mediated by activated JNK signaling. Together, these findings suggest that RASSF6 may play a tumor suppressor role in the progression of ccRCC.  相似文献   

19.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent genetically transmitted disorders among Europeans with an attributed frequency of 0.1%. The two most common genetic determinants for ADPKD are the PKD1 and PKD2 genes. In this study we report the genomic structure and pattern of expression of the Pkd2 gene, the murine homolog of the human PKD2 gene. Pkd2 is localized on mouse Chromosome (Chr) 5 proximal to anchor marker D5Mit175, spans at least 35 kb of the mouse genome, and consists of 15 exons. Its translation product consists of 966 amino acids, and the peptide shows a 95% homology to human polycystin2. Functional domains are particularly well conserved in the mouse homolog. The expression of mouse polycystin2 in the developing embryo at day 12.5 post conception is localized in mesenchymally derived structures. In the adult mouse, the protein is mostly expressed in kidney, which suggests its functional relevance for this organ. Received: 13 March 1998 / Accepted: 11 May 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号