首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133 cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.  相似文献   

2.
The phytoalexin resveratrol exhibits anti‐tumour activity in many types of cancer. In this study, we showed that resveratrol suppressed the survival of gastric tumour cells both in vivo and in vitro. Resveratrol promoted apoptosis, autophagy and endoplasmic reticulum (ER) stress in a dose‐dependent manner. RNA‐seq analysis showed that multiple cell death signalling pathways were activated after resveratrol treatment, while the use of ER stress activators (tunicamycin and thapsigargin) in combinatorial with resveratrol led to further inhibition of cancer cell survival. Results also showed that resveratrol altered the expression of several long non‐coding RNAs (lncRNAs), including MEG3, PTTG3P, GAS5, BISPR, MALAT1 and H19. Knockdown of H19 in resveratrol‐treated cells further enhanced the effects of resveratrol on apoptosis, ER stress and cell cycle S‐phase arrest. Furthermore, the migratory ability of resveratrol‐treated cells was dramatically decreased after H19 knockdown. In conclusion, resveratrol inhibited cancer cell survival, while knockdown of lncRNA H19 resulted in increased sensitivity to resveratrol therapy.  相似文献   

3.
摘要 目的:探索褪黑素联合MPA(醋酸甲羟孕酮)对子宫内膜异常增生细胞增殖活性的抑制作用及其机制。方法:取分化良好的子宫内膜增生细胞株Ishikawa和内膜癌细胞株ECC1于适宜条件培养,加入褪黑素、MPA单独或者联合处理48 h后,检测子宫内膜细胞株的增殖活性。收集褪黑素、MPA单独或者联合处理48 h后的子宫内膜增生细胞株Ishikawa细胞,提取细胞内的蛋白,检测人20α-羟基类固醇脱氢酶(AKR1C1)的表达情况。结果:褪黑素和MPA联合使用后对子宫内膜异常增生细胞的抑制作用明显高于褪黑素或MPA单独使用。褪黑素和MPA可抑制AKR1C1的表达,二者联合使用对AKR1C1的抑制高于两者单独使用。结论:褪黑素可提高子宫内膜异常增生细胞对MPA的敏感性,降低MPA的使用剂量,同时抑制AKR1C1的表达,使孕酮的代谢速率降低。褪黑素与MPA联合使用给子宫内膜增生和内膜癌的治疗策略带来新的思路。  相似文献   

4.
Gastric cancer is the fourth most common cancer worldwide. Despite the high incidence of gastric cancer, efficient chemotherapy treatments still need to be developed. In this study, we examined the anticancer effects of endoplasmic reticulum (ER) stress inducer tunicamycin in gastric cancer. Previously, we found that overexpression of WLS1/GPR177 correlated with poor prognosis in patients with gastric cancer. Furthermore, tunicamycin treatment downregulated GPR177 expression in a dose-dependent manner. GPR177 transports WNT ligand from ER to the plasma membrane, mediating its secretion to the extracellular matrix. In gastric cancer cells, GPR177 preferentially localizes to the ER. Small interfering RNA-mediated knockdown of GPR177 leads to sensitization to ER stress and induces apoptosis of cancer cells along with tunicamycin treatment. GPR177 suppression promoted the ER stress-mediated proapoptotic pathway, such as PERK-CHOP cascade. Furthermore, fluorouracil treatment combined with tunicamycin dramatically reduced cancer cell proliferation. Efficacy of tunicamycin chemotherapy treatments depended on GPR177 expression in gastric cancer cell lines. Together, our results indicate that ER stress can potentiate anticancer effects and suggest GPR177 as a potential gastric cancer therapeutic target.  相似文献   

5.
When the load of secretory pathway is increased or folding capacity in the endoplasmic reticulum (ER) is insufficient, unfolded proteins might accumulate in ER lumen causing a phenomenon called ER stress. During ER stress, normal cell functions are suppressed and unfolded protein response (UPR) is induced. Studies in animal systems suggest that melatonin alleviates the detrimental effects of ER stress; however, there is no study in plants in this respect. Hence, in this study, we investigated the possible role of melatonin on alleviation of ER stress in model plant Arabidopsis thaliana. Tunicamycin (Tm) was used to specifically induce ER stress. Melatonin treatment (10 and 25 μM but not 1 μM) increased root growth under Tm treatment, but it did not reach control levels. ER stress induced the expressions of ER stress sensor/transducer genes, ER chaperones and folding helper genes, ER-associated degradation (ERAD) genes, and ER stress-associated apoptosis genes in roots and shoots (a total of 16 genes). Among them, the expressions of ER stress sensor/transducer bZIP17, bZIP28, IRE1A, IRE1B, ERAD-related SEL1, and apoptosis genes AGB1 were decreased back to control levels with 25 μM melatonin under ER stress in roots. Moreover, Tm?+?melatonin treatments decreased the expressions of these genes when compared to only Tm-treated plants. Downregulation of UPR components with increased concentrations of melatonin under Tm treatment demonstrated that melatonin alleviated the detrimental effects of ER stress.  相似文献   

6.
Melatonin is an endogenously generated molecule with free radical scavenging and antioxidant properties. Here, we studied the antiproliferative role of melatonin and other antioxidants on transformed Chinese hamster ovarian cells. Melatonin reduces cell proliferation in a dose- and time-dependent manner. Natural antioxidants which appear in edible plants including resveratrol and vitamin E mimicked the effect of melatonin. Flow cytometer analysis revealed that melatonin treatment reduces the number of cells in S-phase and increases cells in both G0/G1 and G2/M gaps. In addition, melatonin, as well as trolox, caused a clear morphological change by inducing the cells to become spindle shaped and fibroblast-like. Its effect is a reversible phenomenon that disappeared when melatonin was withdrawn from the culture medium. GSH levels are increased after melatonin treatment but pharmacologically blockade of GSH synthesis did not abolish melatonin's antiproliferative effect. Reduction of cell proliferation and the apparent induction of cell differentiation overlapped with melatonin's ability to change the intracellular redox state of CHO cells. We conclude that the cellular redox state may be involved in cellular transformation caused by antioxidants such as melatonin and trolox.  相似文献   

7.
Leptin and melatonin play an important role in the regulation of body mass and energy balance. Both hormones show a circadian rhythm, with increasing values at night. In addition, melatonin receptors were recently described in adipocytes, where leptin is synthesized. Here, we investigated the influence of melatonin and its interaction with insulin and dexamethasone on leptin expression. Isolated rat adipocytes were incubated with melatonin (1 nM) alone or in combination with insulin (5 nM) and/or dexamethasone (7 nM) for 6 h. Melatonin or insulin alone did not affect leptin expression, but together they increased it by 120%. Dexamethasone increased leptin mRNA content (105%), and this effect was not enhanced by melatonin. Simultaneous treatment with the three hormones provoked a further increase in leptin release (250%) and leptin mRNA (100%). Melatonin prevented the forskolin-induced inhibition (95%) of leptin expression. In addition, melatonin's ability to stimulate leptin release (in the presence of insulin) was completely blocked by pertussis toxin and luzindole. To gain further insight into the molecular basis of melatonin and insulin synergism, the insulin-signaling pathway was investigated. Melatonin increased the insulin-induced insulin receptor-beta tyrosine phosphorylation, which led to an increased serine phosphorylation of the downstream convergent protein Akt. We concluded that melatonin interacts with insulin and upregulates insulin-stimulated leptin expression. These effects are caused by melatonin binding to the pertussis toxin-sensitive G(i) protein-coupled membrane receptor (MT1 subtype) and the cross talk with insulin, since insulin receptor and its convergent target Akt are coactivated by melatonin.  相似文献   

8.
Despite significant advances in therapies in past decades, the mortality rate of septic cardiomyopathy remains high. The aim of this study is to explore the therapeutic effects of combined treatment using melatonin and irisin in a mouse model of lipopolysaccharide (LPS)-mediated septic cardiomyopathy. Our data found that melatonin and irisin could further attenuate LPS-induced myocardial depression. Molecular investigation illustrated that melatonin and irisin cotreatment sustained cardiomyocyte viability and improved mitochondrial function under LPS stress. Pathway analysis demonstrated that macrophage-stimulating 1 (Mst1), which was significantly activated by LPS, was drastically inhibited by melatonin/irisin cotreatment. Mechanically, Mst1 activated c-Jun N-terminal kinase (JNK) pathway and the latter induced oxidative stress, adenosine triphosphate metabolism disorder, mitochondrial membrane potential reduction, and cardiomyocyte death activation. Melatonin and irisin cotreatment effectively inhibited the Mst1–JNK pathway and, thus, promoted cardiomyocyte survival and mitochondrial homeostasis. Interestingly, Mst1 overexpression abolished the beneficial effects of melatonin and irisin in vivo and in vitro. Altogether, our results confirmed that melatonin and irisin combination treatment could protect heart against sepsis-induced myocardial depression via modulating the Mst1–JNK pathways.  相似文献   

9.
ABSTRACT

Geranium thunbergii is a traditional East Asian medicine for stomach diseases including dysentery and stomach ulcers in East Asia and has been reported to possess biological activity. The benefits of G. thunbergii in gastric cancer are unknown. In this study, we demonstrate that G. thunbergii extract suppresses proliferation and induces death and G1/S cell cycle arrest of gastric cancer cells. Proliferation was significantly inhibited in a time- and dose-dependent manner. Cell cycle arrest was associated with significant decreases in CDK4/cyclinD1 complex and CDK2/cyclinE complex genes expression. In addition, the protein expression of caspase-3 was decreased and that of activated poly (ADP-ribose) polymerase (PARP) was increased, which indicated apoptosis. The expressions of the Bax and Bcl-2, which are apoptosis related proteins, were upregulated and down-regulated, respectively. The results indicate that G. thunbergii extract can inhibit proliferation and induce both G/S cell cycle arrest and apoptosis of gastric cancer cells. Also, the induction of apoptosis involved the intrinsic pathways of the cells. Take the results, we suggest that G. thunbergii extract has anti-gastric cancer activity and may be a potential therapeutic candidate for gastric cancer.  相似文献   

10.
Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis. [BMB Reports 2014; 47(12): 697-702]  相似文献   

11.
Osteosarcoma (OS) is a type of malignant primary bone cancer, which is highly aggressive and occurs more commonly in children and adolescents. Thus, novel potential drugs and therapeutic methods are urgently needed. In the present study, we aimed to elucidate the effects and mechanism of melatonin on OS cells to provide a potential treatment strategy for OS. The cell survival rate, cell viability, proliferation, migration, invasion and metastasis were examined by trypan blue assay, MTT, colony formation, wound healing, transwell invasion and attachment/detachment assay, respectively. The expression of relevant lncRNAs in OS cells was determined by real-time qPCR analysis. The functional roles of lncRNA JPX in OS cells were further examined by gain and loss of function assays. The protein expression was measured by western blot assay. Melatonin inhibited the cell viability, proliferation, migration, invasion and metastasis of OS cells (Saos-2, MG63 and U2OS) in a dose-dependent manner. Melatonin treatment significantly downregulated the expression of lncRNA JPX in Saos-2, MG63 and U2OS cells. Overexpression of lncRNA JPX into OS cell lines elevated the cell viability and proliferation, which was accompanied by the increased metastasis. We also found that melatonin inhibited the OS progression by suppressing the expression of lncRNA JPX via regulating the Wnt/β-catenin pathway. Our results suggested that melatonin inhibited the biological functions of OS cells by repressing the expression of lncRNA JPX through regulating the Wnt/β-catenin signalling pathway, which indicated that melatonin might be applied as a potentially useful and effective natural agent in the treatment of OS.  相似文献   

12.
Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells.  相似文献   

13.
The recurrence and metastasis is one of the major reasons for malignant tumor treatment failure. Melatonin, a naturally occuring hormone, could reduce the recurrence and metastasis of various tumors. However, the underlying molecular mechanisms of melatonin on tumor metastasis inhibition have not been fully elucidated. In the present study, we explored the impact of melatonin on the migratory capability of human gastric carcinoma cells using wound healing assay, and further investigated if the inhibition on migration ability of melatonin was embodied by relocating tight junction proteins zo-1 and occludin onto the cells surface to remodel tight junction structure. Immunofluorescence assay and Western blot analysis were performed to detect the expression and cell location of the tight junction proteins. The migration distance was decreased as the cells were treated with melatonin. And melatonin increased the membrane location of tight junction proteins, zo-1 and occludin, showed by immunofluorescence staining and Western blot analysis. The results we got show that melatonin makes tight junction proteins anchored more on the cells membrane to remodel cells tight junction, which increase cells adhesion and decrease motility, resulting in the inhibition of gastric cancer cells migration and metastasis ability.  相似文献   

14.
15.
Breast cancer is the most common neoplastic disorder diagnosed in women. The main goal of this study was to explore the effect of melatonin against breast cancer metastasis and compared this with the actions of taxol (a well-known chemotherapeutic drug), and the impact of their combination against breast cancer metastasis. Melatonin showed no cytotoxic effect while taxol showed antiproliferative and cytotoxic effects on MCF-7 and MDA-MB-231 cells. Furthermore, melatonin inhibited the generation of reactive oxygen species. Melatonin and taxol clearly decreased cell migration and invasion at low doses, especially those matching the normal physiological concentration at night. Melatonin and taxol markedly reduced DJ-1 and ID-1 and increased KLF17 messenger RNA and protein expression levels. The present results also showed that melatonin and taxol induced GSK3-β nuclear and Snail cytosolic localization. These changes were accompanied by a concurrent rise in E-cadherin expression. The above data show that normal levels of melatonin may help in preventing breast cancer metastasis through inhibiting DJ-1/KLF17/ID-1 signaling pathway. The combination of melatonin and taxol is a potent candidate against breast cancer metastasis, better than using melatonin or taxol as a single drug.  相似文献   

16.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

17.
Autoimmune-led challenge resulting in β-cell loss is responsible for the development of type 1 diabetes (T1D). Melatonin, a pineal hormone or sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, has increased β-cell mass in various diabetic models and has immunoregulatory property. Both β-cell regenerative capacity and melatonin secretion decrease with ageing. Thus, we aimed to investigate the therapeutic potential of melatonin combined with sitagliptin on β-cell regeneration under glucotoxic stress, in the streptozotocin-induced young and old diabetic mouse models, and euglycemic humanized islet transplant mouse model. Our results suggest that combination therapy of sitagliptin and melatonin show an additive effect in inducing mouse β-cell regeneration under glucotoxic stress, and in the human islet transplant mouse model. Further, in the young diabetic mouse model, the monotherapies induce β-cell transdifferentiation and reduce β-cell apoptosis whereas, in the old diabetic mouse model, melatonin and sitagliptin induce β-cell proliferation and β-cell transdifferentiation, and it also reduces β-cell apoptosis. Further, in both the models, combination therapy reduces fasting blood glucose levels, increases plasma insulin levels and glucose tolerance and promotes β-cell proliferation, β-cell transdifferentiation, and reduces β-cell apoptosis. It can be concluded that combination therapy is superior to monotherapies in ameliorating diabetic manifestations, and it can be used as a future therapy for β-cell regeneration in diabetes patients.  相似文献   

18.
Chiu SC  Chen SP  Huang SY  Wang MJ  Lin SZ  Harn HJ  Pang CY 《PloS one》2012,7(3):e33742

Background

N-butylidenephthalide (BP) exhibits antitumor effect in a variety of cancer cell lines. The objective of this study was to obtain additional insights into the mechanisms involved in BP induced cell death in human prostate cancer cells.

Methods/Principal Findings

Two human prostate cancer cell lines, PC-3 and LNCaP, were treated with BP, and subsequently evaluated for their viability and cell cycle profiles. BP caused cell cycle arrest and cell death in both cell lines. The G0/G1 phase arrest was correlated with increase levels of CDK inhibitors (p16, p21 and p27) and decrease of the checkpoint proteins. To determine the mechanisms of BP-induced growth arrest and cell death in prostate cancer cell lines, we performed a microarray study to identify alterations in gene expression induced by BP in the LNCaP cells. Several BP-induced genes, including the GADD153/CHOP, an endoplasmic reticulum stress (ER stress)-regulated gene, were identified. BP-induced ER stress was evidenced by increased expression of the downstream molecules GRP78/BiP, IRE1-α and GADD153/CHOP in both cell lines. Blockage of IRE1-α or GADD153/CHOP expression by siRNA significantly reduced BP-induced cell death in LNCaP cells. Furthermore, blockage of JNK1/2 signaling by JNK siRNA resulted in decreased expression of IRE1-α and GADD153/CHOP genes, implicating that BP-induced ER stress may be elicited via JNK1/2 signaling in prostate cancer cells. BP also suppressed LNCaP xenograft tumor growth in NOD-SCID mice. It caused 68% reduction in tumor volume after 18 days of treatment.

Conclusions

Our results suggest that BP can cause G0/G1 phase arrest in prostate cancer cells and its cytotoxicity is mediated by ER stress induction. Thus, BP may serve as an anticancer agent by inducing ER stress in prostate cancer.  相似文献   

19.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent enzymes capable of degradation of extracellular matrix (ECM) and key player in various inflammatory diseases. We investigated the regulation of MMPs in chronic gastric ulceration in mice. We generated chronic gastric ulcers in mice by indomethacin and examined the activity and expression of MMP-9 and -3 in stomach. Melatonin (N-acetyl-5-methoxytryptamine) treatment has also been applied to mice to characterize the changes in expression and activities of MMPs in gastric tissues. We observed significant upregulation of MMP-9 and -3 expressions and activities in stomach with increasing doses and duration of indomethacin that corroborated with increased activity of activator protein (AP)-1. Substantial damage in gastric epithelial layer was found during chronic ulceration. Melatonin suppressed MMP-9 and -3 expressions and activities during prevention and healing of chronic gastric ulcers. It also suppressed protein oxidation, lipid peroxidation and antioxidant enzymes. Additionally, expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-8 was significantly high in ulcerated stomachs while melatonin treatment blocked them to control level. We found elevated phosphorylation of extracellular-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK) during chronic gastric ulceration, which were significantly reversed by melatonin. Moreover, expression of NF-κB, c-fos and c-jun were inhibited by melatonin resulting down regulation of MMP-9 and -3 expressions. In summary, oxidative stress is preceded by chronic inflammation that enhances the expression of MMP-9 and -3, while melatonin arrests both of them via reduction of AP-1 activity during protection of ulcer.  相似文献   

20.
Gastric cancer is the second cause of the common cancer deaths worldwide. Basic fibroblast growth factor (bFGF) was up-regulated in patients with gastric cancer and was regarded as a potential therapeutic target. We have previously obtained a high-affinity bFGF-binding peptide (named P7) from the phage display random heptapeptide library. In this study, we first proved that P7 peptides inhibited proliferation of gastric cancer cell lines including SGC-7901, AGS, and BGC-823 cells stimulated with bFGF. Further investigations with SGC-7901 cells revealed that the mechanisms of P7 peptides inhibiting bFGF-stimulated cell proliferation in vitro involved cell cycle arrest at the G0/G1 phase, blockade of the activation of Erk and P38 cascades, and suppression of bFGF internalization. The results suggested that the bFGF-binding peptide may have therapeutic potential in gastric cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号