首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo examine the role of high‐fat and high‐sugar (HFHS) diet‐induced oxidative stress, which is a risk factor for various diseases, in premature ovarian failure (POF).Materials and methodsOvarian granulosa cells (OGCs) were isolated from mice and cultured in medium supplemented with HFHS and poly (lactic‐co‐glycolic acid) (PLGA)‐cross‐linked miR‐146b‐5p nanoparticles (miR‐146@PLGA). RNA and protein expression levels were examined using quantitative real‐time polymerase chain reaction and Western blotting, respectively. HFHS diet‐induced POF model mice were administered miR‐146@PLGA.ResultsThe ovarian tissue of mice fed a HFHS diet exhibited the typical pathological characteristics of POF. HFHS supplementation induced oxidative stress injury in the mouse OGCs, activation of the Dab2ip/Ask1/p38‐Mapk signalling pathway and phosphorylation of γH2A.X in vitro and in vivo. The results of the luciferase reporter assay revealed that miR‐146 specifically downregulated p38‐Mapk14 expression. Meanwhile, co‐immunoprecipitation and Western blot analyses revealed that HFHS supplementation upregulated nuclear p38‐Mapk14 expression and consequently enhanced γH2A.X (Ser139) phosphorylation. The HFHS diet‐induced POF mouse model treated with miR‐146@PLGA exhibited downregulated p38‐Mapk14 expression in the OGCs, mitigated OGC ageing and alleviated the symptoms of POF.ConclusionsThis study demonstrated that HFHS supplementation activates the Dab2ip/Ask1/p38‐Mapk signalling pathway and promotes γH2A.X phosphorylation by inhibiting the expression of endogenous miR‐146b‐5p, which results in OGC ageing and POF development.  相似文献   

2.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27CD11b+) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR‐l8la‐5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR‐181a‐5p inhibited NK cell development in vitro and in vivo. Furthermore, miR‐181a‐5p is highly conserved in mice and human. MiR‐181a‐5p promoted the production of IFN‐γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR‐181a‐5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR‐181a‐5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.  相似文献   

3.
4.
5.
ObjectivesHepatitis B virus X (HBx) is closely associated with HBV‐related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx‐associated hepatocarcinogenesis phenotypes and mediating anti‐HBx antibody‐mediated tumour suppression remains unknown.Materials and MethodsWe used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx‐Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti‐HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx‐associated hepatocarcinogenesis.ResultsBioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV‐infected liver tissues and HBV‐associated HCC tissues. Our results demonstrated that HBx‐expression promotes AKT phosphorylation (p‐AKTThr308/Ser473), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV‐associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site‐directed mutagenesis (AKTT308A, AKTS473A) of p‐AKTThr308/Ser473 mimics dephosphorylation, genetics‐based B56γ overexpression, and intracellular anti‐HBx antibody inhibited cell growth, migration, and invasion in HBx‐expressing HCC cells.ConclusionsOur results demonstrated that B56γ inhibited HBV/HBx‐dependent hepatocarcinogenesis by regulating the dephosphorylation of p‐AKTThr308/Ser473 in HCC cells. The intracellular anti‐HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV‐related HCC.

Schematic diagram of PP2A‐B56γ mediated the dephosphorylation of p‐AKTThr308/Ser473 in HBx‐expressing HCC cells to regulate the migration and invasion phenotypes of HBV/HBx‐related hepatocarcinogenesis. In current study, HBx‐expression induced the phosphorylation of specific AKT sites (p‐AKTThr308/Ser473) involved in mediating the migration and invasion phenotypes of HCC cells. The inducible upregulation of B56γ mediated the dephosphorylation of p‐AKTThr308/Ser473 in HBx‐expressing HCC cells. Specific blockade of HBx‐expression via pTT5‐anti‐HBx plasmid‐mediated targeting intracellular anti‐HBx mAb production and genetic activation of B56γ would help to target the p‐AKTThr308/Ser473‐MMP2/9 signalling axis to mediate the multipattern chemoprevention and intervention in HBV/HBx‐related hepatocarcinogenesis.  相似文献   

6.
7.
ObjectivesTargeting the deubiquitinases (DUBs) has become a promising avenue for anti‐cancer drug development. However, the effect and mechanism of pan‐DUB inhibitor, PR‐619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated.Materials and MethodsThe effect of PR‐619 on ESCC cell growth and cell cycle was evaluated by CCK‐8 and PI staining. Annexin V‐FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo‐3AM fluorescence. The accumulation of ubi‐proteins and the expression of the endoplasmic reticulum (ER) stress‐related protein and CaMKKβ‐AMPK signalling were determined by immunoblotting.ResultsPR‐619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR‐619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4‐Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+‐CaMKKβ‐AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR‐41, could reduce the accumulation of ubi‐proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR‐619‐treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR‐619.ConclusionsOur findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR‐619) and imply that targeting DUBs may be a potential anti‐ESCC strategy.  相似文献   

8.
9.
ObjectiveThis study aims to profile dysregulated microRNA (miRNA) expression in clear cell renal cell carcinoma (ccRCC) and to identify key regulatory miRNAs in ccRCC.ConclusionsThis study identified 11 commonly dysregulated miRNAs in ccRCC, three of which (miR-199a-5p, miR-22 and miR-429) may represent key miRNAs involved in the pathogenesis of ccRCC. Further studies suggested that miR-199a-5p plays an important role in inhibition of cell invasion of ccRCC cells by suppressing expression of TGFBR1 and JunB.  相似文献   

10.
11.
12.
13.
Liver cancer was reported to be the sixth most frequently diagnosed cancer, and hepatocellular carcinoma (HCC) accounts for 75%-85% of primary liver cancer. Nevertheless, the concrete molecular mechanisms of HCC progression remain obscure, which is essential to elucidate. The expression profile of RAD54B in HCC was measured using qPCR and western blotting. Moreover, the levels of RAD54B in paraffin-embedded samples were evaluated using immunohistochemistry (IHC). The effect of RAD54B on HCC progression was testified by in vitro experiments, and in vivo orthotopic xenograft tumor experiments. The mechanisms of RAD54B promoting HCC progression were investigated through molecular and function experiments. Herein, RAD54B are dramatically upregulated in HCC tissues and cell lines both on mRNA and protein levels, and RAD54B can servers as an independent prognostic parameter of 5-year overall survival and 5-year disease-free survival for patients with HCC. Moreover, up-regulation of RAD54B dramatically increases the capacity for in vitro cell viability and motility, and in vivo intrahepatic metastasis of HCC cells. Mechanistically, RAD54B promotes the HCC progression through modulating the wnt/β-catenin signaling. Notably, blocking the wnt/β-catenin signaling axis can counteract the activating effects of RAD54B on motility of HCC cells. Besides, further analysis illustrates that DNA amplification is one of the mechanisms leading to mRNA overexpression of RAD54B in HCC. Our findings indicate that RAD54B might be a promising potential prognostic marker and a candidate therapeutic target to therapy HCC.  相似文献   

14.
15.
《Cytotherapy》2020,22(9):494-502
Background aimsCutaneous wound management is a major health problem and imposes a huge economic burden worldwide. Previous studies have demonstrated that wound healing is a highly coordinated process including epithelialization, angiogenesis, remodeling and scarring. This progression requires self-renewal, preservation and repair properties of stem cells. However, our understanding of the detailed internal regulatory mechanism following injury and the means to accelerate wound healing are limited.MethodsOur previous research revealed that porcine acellular dermal matrix (ADM) effectively promotes wound healing and scar formation through epidermal stem cells (ESCs), and this process is relevant to the alteration of internal miRNA levels. In this study, we investigated the regulatory function of porcine ADM treatment on miRNAs in ESCs.ResultsWe report that the treatment of porcine ADM reduced the levels of miR-124-3p.1 and miR-139-5p in wounds. MiR-124-3p.1 and miR-139-5p inhibited the expression of JAG1 and Notch1, respectively, by directly targeting miRNAs in ESCs.ConclusionsThis work demonstrates that porcine ADM induced down-regulation of miR-124-3p.1/139-5p in wounds and up-regulation of JAG1/Notch1 in ESCs, thus enhancing cutaneous wound healing.  相似文献   

16.
目的:探讨肝癌细胞外泌体中差异表达的microRNAs(miRNAs)在肝细胞癌(HCC)诊断中的应用价值。方法:通过高通量测序筛选肝癌细胞外泌体中差异表达的miRNAs。实时定量PCR验证差异表达分子;检测差异表达的miRNAs在健康人(Health)、慢性乙型肝炎患者(CHB)、肝硬化患者(LC)及乙型肝炎病毒阳性的肝细胞癌患者(HCC)血清外泌体中的表达。结果:高通量测序筛选到肝癌细胞外泌体中差异表达的miRNA共88种,其中58种表达上调,30种表达下调。选择其中8种差异表达的miRNAs进行q RT-PCR验证,结果显示,此8种miRNAs在细胞上清外泌体、细胞内、癌与癌旁组织中的表达趋势与测序结果一致。miR-221-3p和miR-224-5p在HCC组外泌体中的表达水平显著高于Health组、CHB组和LC组(P0.01),miR-124-3p和let-7a-5p在HCC组外泌体中的表达水平显著低于其他各组(P0.05)。四个组中,miR-21-5p、miR-191-5p、miR-34a-5p和miR-122-5p的表达水平不存在显著性差异(P0.05)。结论:血清外泌体中的miR-221-3p、miR-224-5p、miR-124-3p和let-7a-5p可能成为肝细胞癌的候选标志物。  相似文献   

17.
18.
Epigenetic changes have emerged as key causes in the development and progression of multiple myeloma (MM). In this study, global microRNA (miRNA) expression profiling were performed for 27 MM (19 specimens and 8 cell lines) and 3 normal controls by microarray. miRNA-targets were identified by integrating the miRNA expression profiles with mRNA expression profiles of the matched samples (unpublished data). Two miRNAs were selected for verification by RT-qPCR (miR-150-5p and miR-4430). A total of 1791 and 8 miRNAs were over-expressed and under-expressed, respectively in MM compared to the controls (fold change ≥2.0; p?<?0.05). The miRNA-mRNA integrative analysis revealed inverse correlation between 5 putative target genes (RAD54L, CCNA2, CYSLTR2, RASGRF2 and HKDC1) and 15 miRNAs (p?<?0.05). Most of the differentially expressed miRNAs are involved in survival, proliferation, migration, invasion and drug resistance in MM. Some have never been described in association with MM (miR-33a, miR-9 and miR-211). Interestingly, our results revealed 2 miRNAs, which are closely related to B cell differentiation (miR-150 and miR-125b). For the first time, we suggest that miR-150 might be potential negative regulator for two critical cell cycle control genes, RAD54L and CCNA2, whereas miR-125b potentially target RAS and CysLT signaling proteins, namely RASGRF2 and CYSLTR2, respectively. This study has enhanced our understanding on the pathobiology of MM and opens up new avenues for future research in myelomagenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号