首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo investigate the role and mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF).Study designRat cardiac fibroblasts (RCFs) models and RCFs were used to explore the effect and underlying mechanism of quercetin in isoprenaline (ISO)-induced atrial fibrillation (AF) in vivo and in vitro by a series of experiments.MethodsDifferentially expressed microRNAs were screened from human AF tissues using the GEO2R and RT-qPCR. The expressions of TGF-β/Smads pathway molecules (TGFβ1, TGFBR1, Tgfbr1, Tgfbr2, Smad2, Smad3, Smad4) in AF tissues were detected by RT-qPCR and Western blot. The relationships between miR-135b and genes (Tgfbr1, Tgfbr2, Smad2) were analyzed by Pearson correlation, TargetScan and dual-luciferase activity assay. RCFs induced by ISO were treated with quercetin (20 or 50 μM), miR-135b mimic and inhibitor, siTgfbr1 and their corresponding controls, then the cell viability was determined by MTT and the expressions of cyclin D1, α-SMA, collagen-related molecules, TGF-β/Smads pathway molecules, and miR-135b were measured by RT-qPCR and Western blot. ISO-induced rats were treated with quercetin (25 mg/kg/day) via gavage, miR-135b antagomir, agomir and their corresponding controls. The treated rats were used for the detection of miR-135b expression by RT-qPCR, histopathological observation by HE and Masson staining, and the detection of Col1A1 and fibronectin contents by immunohistochemical technique.ResultsThe expression of miR-135b was downregulated, and those of TGFBR1, TGFBR2, target genes of miR-135b were upregulated in human AF tissues and negatively regulated by miR-135b in RCFs. Through inhibiting TGF-β/Smads pathway via promoting miR-135b expression, quercetin treatment inhibited proliferation, myofibroblast differentiation and collagen deposition in ISO-treated RCFs, as evidenced by reduced expressions of cyclin D1, α-SMA, collagen-related genes and proteins, and alleviated fibrosis and collagen deposition of atrial tissues in ISO-treated rats.ConclusionQuercetin may alleviate AF by inhibiting fibrosis of atrial tissues through inhibiting TGF-β/Smads pathway via promoting miR-135b expression.  相似文献   

2.
3.
BackgroundHepatic fibrosis is considered integral to the progression of chronic liver diseases, as it leads to the development of cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. The transforming growth factor-β1 (TGF-β1) and Yes-associated protein (YAP) pathways play a pivotal role in HSC activation, hepatic fibrosis and cirrhosis progression. Therefore, targeting the TGF-β/Smad and YAP signaling pathways is a promising strategy for antifibrotic therapy.PurposeThe present study investigated the protective effects of Physalin D (PD), a withanolide isolated from Physalis species (Solanaceae), against liver fibrosis and further elucidated the mechanisms involved in vitro and in vivo.Study design/methodsWe conducted a series of experiments using carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced fibrotic mice and cultured LX-2 cells. Serum markers of liver injury, and the morphology, histology and fibrosis of liver tissue were investigated. Western blot assays and quantitative real-time PCR were used to investigate the mechanisms underlying the antifibrotic effects of PD.ResultPD decreased TGF-β1-induced COL1A1 promoter activity. PD inhibited TGF-β1-induced expression of Collagen I and α-smooth muscle actin (α-SMA) in human hepatic stellate LX-2 cells. PD significantly ameliorated hepatic injury, including transaminase activities, histology, collagen deposition and α-SMA, in CCl4- or BDL-induced mice. Moreover, PD markedly decreased the expression of phosphorylated Smad2/3 in vitro and in vivo. Furthermore, PD significantly decreased YAP protein levels, and YAP knockdown did not further enhance the effects of PD, namely α-SMA inhibition, Collagen I expression and YAP target gene expression in LX-2 cells.ConclusionThese results clearly show that PD ameliorated experimental liver fibrosis by inhibiting the TGF-β/Smad and YAP signaling pathways, indicating that PD has the potential to effectively treat liver fibrosis.  相似文献   

4.
Objective

Atrial fibrillation (AF) is a major cause of stroke with lifetime risks. microRNAs (miRNAs) are associated with AF attenuation, yet the mechanism remains unknown. This study investigated the functional mechanism of miR-29b in atrial fibrosis in AF.

Methods

The AF rat model was established by a 7-day intravenous injection of Ach-CaCl2 mixture. AF rats were injected with adeno-associated virus (AAv)-miR-29b and TGFβRΙ overexpression plasmid. AF duration was recorded by electrocardiogram. Atrial fibrosis was observed by Masson staining. Expressions of COL1A1, COL3A1, TGFβRΙ, TGFβΙ, miR-29b and Smad-2/3 pathway-related proteins in atrial tissues were detected by RT-qPCR and Western blot. Binding sites of miR-29b and TGFβRΙ were predicted and their target relationship was verified by dual-luciferase reporter assay.

Results

miR-29b was poorly expressed and expressions of COL1A1, COL3A1, TGFβRΙ, and TGFβ1 were increased in atrial tissues of AF rats. miR-29b overexpression alleviated atrial fibrosis, reduced expressions of COL1A1, COL3A1, and TGFβ1, and shortened AF duration in AF rats. TGFβRΙ was highly expressed in atrial tissues of AF rats. miR-29b targeted TGFβRΙ. TGFβRΙ overexpression overcame the improving effect of miR-29b overexpression on AF. miR-29b overexpression decreased ratios of p-Smad-2/3 and Smad-2/3 and inhibited the Smad-2/3 pathway.

Conclusion

miR-29b might mitigate atrial fibrosis in AF rats by targeting TGFβRΙ and inhibiting the Smad-2/3 pathway.

  相似文献   

5.
Atrial fibrosis plays a critical role in atrial fibrillation (AF) by the transforming growth factor (TGF)-β1/Smad pathway. The disordered differentiation, proliferation, migration and collagen deposition of atrial fibroblasts play significant roles in atrial fibrosis. Mitsugumin (MG)53 is predominantly expressed in myocardium of rodents and has multiple biological functions. However, the role of MG53 in cardiac fibrosis remains unclear. This study provided clinical and experimental evidence for the involvement of MG53 in atrial fibrosis in humans and atrial fibrosis phenotype in cultured rat atrial fibroblasts. In atrial tissue from patients we demonstrated that MG53 was expressed in human atrium. Expression of MG53 increased with the extent of atrial fibrosis, which could induce AF. In cultured atrial fibroblasts, depletion of MG53 by siRNA caused down-regulation of the TGF-β1/Smad pathway, while overexpression of MG53 by adenovirus up-regulated the pathway. MG53 regulated the proliferation and migration of atrial fibroblasts. Besides, exogenous TGF-β1 suppressed expression of MG53. In conclusion, we demonstrated that MG53 was expressed in human atrium, and may be a potential upstream of the TGF-β1/Smad pathway in human atrium and rat atrial fibroblasts. This suggests that MG53 is a potential regulator of atrial fibrosis induced by the TGF-β1/Smad pathway in patients with AF.  相似文献   

6.
7.
Excessive post-epidural fibrosis is a common cause of recurrent back pain after spinal surgery. Though various treatment methods have been conducted, the safe and effective drug for alleviating post-epidural fibrosis remains largely unknown. Metformin, a medicine used in the treatment of type 2 diabetes, has been noted to relieve fibrosis in various organs. In the present study, we aimed to explore the roles and mechanisms of metformin in scar formation in a mouse model of laminectomy. Post-epidural fibrosis developed in a mouse model of laminectomy by spinous process and the T12-L2 vertebral plate with a rongeur. With the administration of metformin, post-epidural fibrosis was reduced, accompanied with decreased collagen and fibronectin in the scar tissues. Mechanistically, metformin decreased fibronectin and collagen deposition in fibroblast cells, and this effect was dependent on the HMGB1/TLR4 and TGF-β1/Smad3 signalling pathways. In addition, metformin influenced the metabolomics of the fibroblast cells. Taken together, our study suggests that metformin may be a potential option to mitigate epidural fibrosis after laminectomy.  相似文献   

8.
Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250 μg/100 g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.  相似文献   

9.
Idiopathic interstitial pulmonary fibrosis is a common diffuse interstitial lung disease and has poor prognosis. And one of the pathological features of it is persistent fibroblast activation. It was reported that microRNA-30a was down-regulated in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. But whether miR-30a is involved in fibroblast activation and its specific mechanism is unclear. In this study, we aimed to investigate the role of miR-30a in fibroblast activation induced by TGF-β1. We found miR-30a could targetedly suppress FAP-α expression. In MRC5 cells, miR-30a was not only involved in regulating the expression of FAP-α, col1a and α-SMA induced by TGF-β1 but also had a role in cell proliferation with or without TGF-β1 treatment via regulating FAP-α expression. Thus, the results indicated that miR-30a alleviated fibroblast activation by regulating the expression of FAP-α.  相似文献   

10.
Alzheimer's disease (AD) is the most common dementia, characterized by pathological accumulation of β-amyloid (Aβ) and hyperphosphorylation of tau protein, together with a damaging chronic inflammation. The lack of effective treatments urgently warrants new therapeutic strategies. Resolution of inflammation, associated with beneficial and regenerative activities, is mediated by specialized pro-resolving lipid mediators (SPMs) including maresin 1 (MaR1). Decreased levels of MaR1 have been observed in AD brains. However, the pro-resolving role of MaR1 in AD has not been fully investigated. In the present study, human monocyte-derived microglia (MdM) and a differentiated human monocyte cell line (THP-1 cells) exposed to Aβ were used as models of AD neuroinflammation. We have studied the potential of MaR1 to inhibit pro-inflammatory activation of Aβ and assessed its ability to stimulate phagocytosis of Aβ42. MaR1 inhibited the Aβ42-induced increase in cytokine secretion and stimulated the uptake of Aβ42 in both MdM and differentiated THP-1 cells. MaR1 was also found to decrease chemokine secretion and reduce the associated increase in the activation marker CD40. Activation of kinases involved in transduction of inflammation was not affected by MaR1, but the activity of nuclear factor (NF)-κB was decreased. Our data show that MaR1 exerts effects that indicate a pro-resolving role in the context of AD and thus presents itself as a potential therapeutic target for AD.  相似文献   

11.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease in diabetic patients. Zicao, a well-known Chinese traditional medicine, has attracted much attention due to its beneficial effects in various medical fields. In this study, we attempted to investigate the effects and mechanisms of action of acetylshikonin, the main ingredient of Zicao, on renal dysfunction in DN. Our results showed that administration with acetylshikonin not only decreased blood urea nitrogen, urine creatinine and the mean kidney-to-body weight ratio in streptozotocin-induced diabetic mice, but also restored the loss of body weight, whereas the blood glucose was not changed. Masson’s trichrome staining showed that acetylshikonin treatment resulted in a marked decrease in kidney fibrosis from diabetic mice. The increased expression of fibrosis proteins, such as plasminogen activator inhibitor type 1 (PAI-1), connective tissue growth factor, and collagen III and IV, were reduced after acetylshikonin administration. In addition, the expressions of interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, intercellular adhesion molecule 1 and infiltration of macrophages in kidney tissues were decreased in acetylshikonin-treated diabetic mice. Acetylshikonin led to a reduction of transforming growth factor-β1 (TGF-β1) expression and Smad-2/3 phosphorylation, as accompanied by increased Smad7 expression. Furthermore, in vitro treatment with acetylshikonin markedly attenuated TGF-β1-induced the PAI-1, collagen III and IV, and Smad-2/3 phosphorylation in HK2 immortalized human proximal tubule epithelial cells. Acetylshikonin also prevented epithelial-to-mesenchymal transition induced by TGF-β1. Collectively, our study provides evidences that acetylshikonin attenuates renal fibrosis though inhibiting TGF-β1/Smad signaling pathway, suggesting that acetylshikonin may be a novel therapeutic agent for the treatment of DN.  相似文献   

12.
Radiation-induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation-induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)-approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X-ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor-β1 (TGF-β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation-induced expression of TGF-β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL-4–induced M2 macrophage polarization and IL-13–induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase-1 (ARG-1), chitinase 3-like 3 (YM-1) and TGF-β1. Notably, the PFD-induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa-B (NF-κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation-induced chemokine secretion in MLE-12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF-β1 from M2 macrophages by attenuating the activation of TGF-β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF-β1/Smad3.  相似文献   

13.
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β(1). Interestingly, TGF-β(1) secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β(1) restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β(1)-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β(1) expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.  相似文献   

14.
15.
16.
We have recently described that in an experimental model of atherosclerosis and in vascular smooth muscle cells (VSMCs) statins increased the activation of the Smad pathway by transforming growth factor-β (TGF-β), leading to an increase in TGF-β-dependent matrix accumulation and plaque stabilization. Angiotensin II (AngII) activates the Smad pathway and contributes to vascular fibrosis, although the in vivo contribution of TGF-β has not been completely elucidated. Our aim was to further investigate the mechanisms involved in AngII-induced Smad activation in the vasculature, and to clarify the beneficial effects of statins on AngII-induced vascular fibrosis. Infusion of AngII into rats for 3 days activates the Smad pathway and increases fibrotic-related factors, independently of TGF-β, in rat aorta. Treatment with atorvastatin or simvastatin inhibited AngII-induced Smad activation and related-fibrosis. In cultured rat VSMCs, direct AngII/Smad pathway activation was mediated by p38 MAPK and ROCK activation. Preincubation of VSMCs with statins inhibited AngII-induced Smad activation at all time points studied (from 20 minutes to 24 hours). All these data show that statins inhibited several AngII-activated intracellular signaling systems, including p38-MAPK and ROCK, which regulates the AngII/Smad pathway and related profibrotic factors and matrix proteins, independently of TGF-β responses. The inhibitory effect of statins on the AngII/Smad pathway could explain, at least in part, their beneficial effects on hypertension-induced vascular damage.  相似文献   

17.
Ras converting enzyme 1 (Rce1) plays an important role in invasion and metastasis of malignancy. However, the mechanism has not yet been fully explored in hepatocellular carcinoma (HCC). Primarily, we investigated the expression of Rce1 and H-Ras influence on patient prognosis through the clinical data. Further, we analyzed the regulatory effects of Rce1/H-Ras signal pathway on the epithelial–mesenchymal transition (EMT) in vitro and in vivo. Finally, we screened out the protein which bonds with Rce1 by CO-IP experiment to discuss the mechanism of Rce1 in EMT of HCC. This research revealed a significantly decreased expression of Rce1 in HCC compared with noncancerous tissues (p < .05). In contrast, H-Ras expression was increased in the tumor. The expression of them was a close association with the differentiation and tumor-node-metastasis (TNM) stage of the tumor (p < .001; p = .035, respectively) and Rce1 was an independent prognostic indicator (95%Cl: 0.193–0.821; p = .013). Through targeted regulation of Rce1 by cDNA or small interfering RNA, results show that the lower expression of Rce1 facilitated EMT and promoted the invasion and metastasis of HCC (p < .05). Furthermore, the CO-IP experiment unfolded that Rce1 could bond with farnesyltransferase-β (FNTB) which mediated the expression of H-Ras. Conclusions: Rce1 inhibits EMT via target regulation H-Ras and suppress the early invasion and metastasis of HCC. It may be a potential therapeutic target and prognostic indicator for HCC.  相似文献   

18.
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.  相似文献   

19.
Oxidative stress with reactive oxygen species (ROS) can contribute to the pathogenesis of idiopathic pulmonary fibrosis. Antioxidant enzymes, such as extracellular superoxide dismutase (ECSOD), may modulate the injury and repair components of the fibrogenic response. Here we determined whether ECSOD could attenuate experimental TGF-β1-induced persistent lung fibrosis. In this study, primary human lung fibroblasts, MRC-5 fibroblasts and A549 epithelial cells were exposed to recombinant active TGF-β1. An adenovirus vector that expresses human ECSOD (AdECSOD) was constructed and rats were endotracheally intubated with an adenoviral vector encoding active TGF-β1 (AdTGF-β1), AdECSOD or a control vector (AdDL70) alone or in combinations AdTGF-β1/AdDL70 or AdTGF-β1/AdECSOD. TGF-β1 alone induced fibrotic responses and significantly down-regulated endogenous ECSOD gene expression both in vitro and in vivo and caused oxidative stress in rat lung, associated with increased levels of activated TGF-β1 in lung fluid and tissue. ECSOD protein was markedly reduced in the interstitium and fibrotic foci in TGF-β1 induced experimental lung fibrosis. The fibrotic response caused by AdTGF-β1 was markedly attenuated by concomitant gene transfer using AdECSOD, detected by lung function measurements, histologic and morphometric analysis, hydroxyproline content and fibrosis-related gene expression. In addition, the oxidative stress and increased presence of activated TGF-β1 in rat lung induced by AdTGF-β1 was significantly reduced by ECSOD gene transfer. These findings suggest a substantial role for oxidative stress in the pathogenesis of TGF-β1 driven persistent pulmonary fibrosis and enhanced presence of ECSOD can inhibit latent TGF-β1 activation by ROS and diminish subsequent fibrotic responses.  相似文献   

20.
Journal of Physiology and Biochemistry - Hypertension or angiotensin II (Ang II) induces cardiac inflammation and fibrosis, thus contributing to cardiac remodeling. MicroRNAs (miRNAs) are...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号