首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As regards their morphology and biology, tumours consist of heterogeneous cell populations. The cancer stem cell (CSC) hypothesis assumes that a tumour is hierarchically organized and not all of the cells are equally capable of generating descendants, similarly to normal tissue. The only cells being able to self-renew and produce a heterogeneous tumour cell population are cancer stem cells. CSCs probably derive from normal stem cells, although progenitor cells may be taken into consideration as the source of cancer stem cells. CSCs reside in the niche defined as the microenvironment formed by stromal cells, vasculature and extracellular matrix. The CSC assays include FACS sorting, xenotransplantation to immunodeficient mice (SCID), incubation with Hoechst 33342 dye, cell culture in non-adherent conditions, cell culture with bromodeoxyuridine. CSCs have certain properties that make them resistant to anticancer therapy, which suggests they may be the target for potential therapeutic strategies.  相似文献   

2.
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self‐renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self‐renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well‐studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti‐cancer regimes.  相似文献   

3.
Developments in adult stem cell (ASC) potentiation have contributed to excitement in the field of stem cell-based therapy. The use of ASCs not only increases therapeutic treatment possibilities but successful use of multipotent cells for gene therapy has been demonstrated in animal models [1]. Concurrent ability of stem cells (SCs) to either contribute to disease development, as identified in cancer stem cells (CSCs), or to replace diseased tissue by induced differentiation using selected growth factors, has highlighted the intricate molecular and cellular mechanisms. Adipose derived stem cells (ADSCs) are capable of self-renewal and respond well to induced differentiation [2]. Auto-immunity and transplant rejection may become minor limitations when selective induction of immunological nonresponsiveness to specific antigens or tissues become possible using autologous cell sources [3]. CSCs initiate tumorogenesis, can generate differentiated daughter cells or undergo self-renewal while thought to instigate tumour regeneration post-treatment. Therapy targeting CSCs has failed to provide feasible alternatives to conventional cancer treatment. Low intensity laser irradiation (LILI), induce a biostimulatory response in several tissue types in addition to a dose-response effect to the detriment of cellular degeneration. Potential of LILI to induce CSC differentiation and subsequent cytotoxic therapy to prevent tumour regeneration is explored in this mini-review.  相似文献   

4.
Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood–brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self‐renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase‐like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down‐regulation of ROR1 suppressed the expression of epithelial‐mesenchymal transition‐related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Since the first publication regarding the existence of stem cells in cancer [cancer stem cells(CSCs)] in 1994, many studies have been published providing in-depth information about their biology and function. This research has paved the way in terms of appreciating the role of CSCs in tumour aggressiveness, progression,recurrence and resistance to cancer therapy. Targeting CSCs for cancer therapy has still not progressed to a sufficient degree, particularly in terms of exploring the mechanism of dynamic interconversion between CSCs and non-CSCs. Besides the CSC scenario, the problem of cancer dissemination has been analyzed indepth with the identification and isolation of microRNAs(miRs), which are now considered to be compelling molecular markers in the diagnosis and prognosis of tumours in general and specifically in patients with non-small cell lung cancer.Paracrine release of miRs via "exosomes"(small membrane vesicles(30-100 nm),the derivation of which lies in the luminal membranes of multi-vesicular bodies)released by fusion with the cell membrane is gaining popularity. Whether exosomes play a significant role in maintaining a dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity is as yet unknown.Future studies on CSC-related exosomes will provide new perspectives for precision-targeted treatment strategies.  相似文献   

6.
Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.  相似文献   

7.
Glioblastoma Multiforme (GBM) is an incurable malignancy. GBM patients have a short life expectancy despite aggressive therapeutic approaches based on surgical resection followed by adjuvant radiotherapy and concomitant chemotherapy. Glioblastoma growth is characterized by a high motility of tumour cells, their resistance to both chemo/radio‐therapy, apoptosis inhibition leading to failure of conventional therapy. Cancer Stem Cells (CSCs), identified in GBM as well as in many other cancer types, express the membrane antigen prominin‐1 (namely CD133). These cells and normal Neural Stem Cells (NSC) share surface markers and properties, i.e. are able to self‐renew and differentiate into multiple cell types. Stem cell self‐renewal depends on microenvironmental cues, including Extracellular Matrix (ECM) composition and cell types. Therefore, the role of microenvironment needs to be evaluated to clarify its importance in tumour initiation and progression through CSCs. The specific microenvironment of CSCs was found to mimic in part the vascular niche of normal stem cells. The targeting of GMB CSCs may represent a powerful treatment approach. Lastly, in GBM patients cancer‐initiating cells contribute to the profound immune suppression that in turn correlated with CSCs STAT3 (CD133 + ). Further studies of microenvironment are needed to better understand the origin of GMB/GBM CSCs and its immunosuppressive properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
《MABS-AUSTIN》2013,5(1):12-25
Antibody targeting of cancer is showing clinical and commercial success after much intense research and development over the last 30 years. They still have the potential to delivery long-term cures but a shift in thinking towards a cancer stem cell (CSC) model for tumour development is certain to impact on how antibodies are selected and developed, the targets they bind to and the drugs used in combination with them. CSCs have been identified from many human tumours and share many of the characteristics of normal stem cells. The ability to renew, metabolically or physically protect themselves from xenobiotics and DNA damage and the range of locomotory-related receptors expressed could explain the observations of drug resistance and radiation insensitivity leading to metastasis and patient relapse.

Targeting CSCs could be a strategy to improve the outcome of cancer therapy but this is not as simple as it seems. Targets such as CD133 and EpCAM/ESA could mark out CSCs from normal cells enabling specific intervention but indirect strategies such as interfering with the establishment of a supportive niche through anti-angiogenic or anti-stroma therapy could be more effective.

This review will outline the recent discoveries for CSCs across the major tumour types highlighting the possible molecules for intervention. Examples of antibody-directed CSC therapies will be given and the outlook for the future development of this emerging area will be given.  相似文献   

9.
Dou J  Jiang C  Wang J  Zhang X  Zhao F  Hu W  He X  Li X  Zou D  Gu N 《Cell biology international》2011,35(3):227-234
CSCs (cancer stem cells) are a small subset of cells within a tumour that possesses the characteristics of stem cells and are considered to be responsible for resistance to chemoradiation. Identification of CSCs through stem cell characteristics might have relevant clinical implications. In this study, SP (side population ) cells were sorted from a human ovarian cancer cell line by FACS to determine whether cancer stem cell-like SP cells were present. A very small fraction of SP cells (2.6%) was detected in A2780 cells. SP cells possessed the following characteristics: highly proliferative activity, marked ability for self-renewal in soft agar and culture medium, high expression of ABCG2, drug resistance to vinblastine in vitro, and strong tumourigenic potential in Balb/c nude mice. It is concluded that there exists in the A2780 cell line a small number of SP cells with high expression of ABCG2. The cells have the characteristics of cancer stem-like cells, and identification and cloning of such human SP cells can help in improving therapeutic approaches to ovarian cancer in patients.  相似文献   

10.
肿瘤干细胞(cancerstem cells,CSCs)是在肿瘤组织中具有干细胞特性的细胞亚群,它具有正常干细胞的多向分化潜能,能够无限增值和自主分化为各种具有异质性的肿瘤细胞。CSCs在肿瘤的发生、生长、转移中起着重要作用。同时,CSCs对目前大多数治疗如化疗、放疗不敏感,甚至具有耐药性,这也就导致了恶性肿瘤在治疗后容易复发。鉴于此,针对肿瘤干细胞的治疗日益受到关注,光动力疗法(photodynamictherapy,PDT)由于其微创性,不良反应少,靶向性强等特点在肿瘤的治疗研究中不断得到发展。本文将从CSCs的特性入手,结合PDT治疗的最新进展,探讨PDT治疗在肿瘤干细胞治疗中的应用。  相似文献   

11.
The tumour control probability (TCP) is a formalism derived to compare various treatment regimens of radiation therapy, defined as the probability that given a prescribed dose of radiation, a tumour has been eradicated or controlled. In the traditional view of cancer, all cells share the ability to divide without limit and thus have the potential to generate a malignant tumour. However, an emerging notion is that only a sub-population of cells, the so-called cancer stem cells (CSCs), are responsible for the initiation and maintenance of the tumour. A key implication of the CSC hypothesis is that these cells must be eradicated to achieve cures, thus we define TCPS as the probability of eradicating CSCs for a given dose of radiation. A cell surface protein expression profile, such as CD44high/CD24low for breast cancer or CD133 for glioma, is often used as a biomarker to monitor CSCs enrichment. However, it is increasingly recognized that not all cells bearing this expression profile are necessarily CSCs, and in particular early generations of progenitor cells may share the same phenotype. Thus, due to the lack of a perfect biomarker for CSCs, we also define a novel measurable TCPCD+, that is the probability of eliminating or controlling biomarker positive cells. Based on these definitions, we use stochastic methods and numerical simulations parameterized for the case of gliomas, to compare the theoretical TCPS and the measurable TCPCD+. We also use the measurable TCP to compare the effect of various radiation protocols.  相似文献   

12.
Cancer stem cells (CSCs) are a small subset of heterogeneous cells existed in tumour tissues or cancer cell lines with self‐renewal and differentiation potentials. CSCs were considered to be responsible for the failure of conventional therapy and tumour recurrence. However, CSCs are not a static cell population, CSCs and non‐CSCs are maintained in dynamic interconversion state by their self‐differentiation and dedifferentiation. Therefore, targeting CSCs for cancer therapy is still not enough,exploring the mechanism of dynamic interconversion between CSCs and non‐CSCs and blocking the interconversion seems to be imperative. Exosomes are 30‐100 nm size in diameter extracellular vesicles (EVs) secreted by multiple living cells into the extracellular space. They contain cell‐state‐specific bioactive materials, including DNA, mRNA, ncRNA, proteins, lipids, etc. with their specific surface markers, such as, CD63, CD81, Alix, Tsg101, etc. Exosomes have been considered as information carriers in cell communication between cancer cells and non‐cancer cells, which affect gene expressions and cellular signalling pathways of recipient cells by delivering their contents. Now that exosomes acted as information carriers, whether they played role in maintaining dynamic equilibrium state between CSCs and non‐CSCs and their mechanism of activity are unknown. This review summarized the current research advance of exosomes’ role in maintaining CSC dynamic interconversion state and their possible mechanism of action, which will provide a better understanding the contribution of exosomes to dedifferentiation and stemness acquisition of non‐CSCs, and highlight that exosomes might be taken as the attractive target approaches for cancer therapeutics.  相似文献   

13.
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.  相似文献   

14.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

15.
Cancer stem cells (CSCs) are the main cause of tumor growth, invasion, metastasis and recurrence. Recently, CSCs have been extensively studied to identify CSC-specific surface markers as well as signaling pathways that play key roles in CSCs self-renewal. The involvement of CSCs in the pathogenesis of gastrointestinal (GI) cancers also highlights these cells as a priority target for therapy. The diagnosis, prognosis and treatment of GI cancer have always been a focus of attention. Therefore, the potential application of CSCs in GI cancers is receiving increasing attention. This review summarizes the role of CSCs in GI cancers, focusing on esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer. In addition, we propose CSCs as potential targets and therapeutic strategies for the effective treatment of GI cancers, which may provide better guidance for clinical treatment of GI cancers.  相似文献   

16.
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.  相似文献   

17.
Recent experimental evidence indicates that many solid cancers have a hierarchical organization structure with a subpopulation of cancer stem cells (CSCs). The ability to identify CSCs prospectively now allows for testing the responses of CSCs to treatment modalities like radiation therapy. Initial studies have found CSCs in glioma and breast cancer relatively resistant to ionizing radiation and possible mechanisms behind this resistance have been explored. This review summarizes the landmark publications in this young field with an emphasis on the radiation responses of CSCs. The existence of CSCs in solid cancers place restrictions on the interpretation of many radiobiological observations, while explaining others. The fact that these cells may be a relatively quiescent subpopulation that are metabolically distinct from the other cells in the tumor has implications for both imaging and therapy of cancer. This is particularly true for biological targeting of cancer for enhanced radiotherapeutic benefit, which must consider whether the unique properties of this subpopulation allow it to avoid such therapies. J. Cell. Biochem. 108: 339–342, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Malignant pleural mesothelioma (MPM) is an aggressive tumour resistant to treatments. It has been postulated that cancer stem cells (CSCs) persist in tumours causing relapse after multimodality treatment. In the present study, a novel miRNA-based therapy approach is proposed. MPM-derived spheroids have been treated with exosome-delivered miR-126 (exo-miR) and evaluated for their anticancer effect. The exo-miR treatment increased MPM stem-cell like stemness and inhibited cell proliferation. However, at a prolonged time, the up taken miR-126 was released by the cells themselves through exosomes; the inhibition of exosome release by an exosome release inhibitor GW4869 induced miR-126 intracellular accumulation leading to massive cell death and in vivo tumour growth arrest. Autophagy is involved in these processes; miR-126 accumulation induced a protective autophagy and the inhibition of this process by GW4869 generates a metabolic crisis that promotes necroptosis, which was associated with PARP-1 over-expression and cyt-c and AIF release. Here, for the first time, we proposed a therapy against CSCs, a heterogeneous cell population involved in cancer development and relapse.  相似文献   

19.
Cancer stem cells have been implicated in a number of solid malignancies including prostate cancer. In the case of localised prostate cancer, patients are often treated with surgery (radical prostatectomy) and/or radiotherapy. However, disease recurrence is an issue in about 30% of patients, who will then go on to receive hormone ablation therapy. Hormone ablation therapy is often palliative in a vast proportion of individuals, and for hormone-refractory patients, there are several immunotherapies targeting a number of prostate tumour antigens which are currently in development. However, clinical responses in this setting are inconsistent, and it is believed that the failure to achieve full and permanent tumour eradication is due to a small, resistant population of cells known as ‘cancer stem cells’ (CSCs). The stochastic and clonal evolution models are among several models used to describe cancer development. The general consensus is that cancer may arise in any cell as a result of genetic mutations in oncogenes and tumour suppressor genes, which consequently result in uncontrolled cell growth. The cancer stem cell theory, however, challenges previous opinion and proposes that like normal tissues, tumours are hierarchical and only the rare subpopulation of cells at the top of the hierarchy possess the biological properties required to initiate tumourigenesis. Furthermore, where most cancer models infer that every cell within a tumour is equally malignant, i.e. equally capable of reconstituting new tumours, the cancer stem cell theory suggests that only the rare cancer stem cell component possess tumour-initiating capabilities. Hence, according to this model, cancer stem cells are implicated in both tumour initiation and progression. In recent years, the role of epithelial–mesenchymal transition (EMT) in the advancement of prostate cancer has become apparent. Therefore, CSCs and EMT are both likely to play critical roles in prostate cancer tumourigenesis. This review summarises the current immunotherapeutic strategies targeting prostate tumour antigens taking into account the need to consider treatments that target cancer stem cells and cells involved in epithelial–mesenchymal transition.  相似文献   

20.
Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号