首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnts include more than 19 types of secreted glycoproteins that are involved in a wide range of pathological processes in oral and maxillofacial diseases. The transmission of Wnt signalling from the extracellular matrix into the nucleus includes canonical pathways and noncanonical pathways, which play an important role in tooth development, alveolar bone regeneration, and related diseases. In recent years, with the in-depth study of Wnt signalling in oral and maxillofacial-related diseases, many new conclusions and perspectives have been reached, and there are also some controversies. This article aims to summarise the roles of Wnt signalling in various oral diseases, including periodontitis, dental pulp disease, jaw disease, cleft palate, and abnormal tooth development, to provide researchers with a better and more comprehensive understanding of Wnts in oral and maxillofacial diseases.  相似文献   

2.
Wnt proteins act mainly as paracrine signals regulating cell proliferation and differentiation. The canonical Wnt pathway has recently been associated with pancreas development and the onset of type 2 diabetes in rodent and human but the underlying mechanisms are still unclear. The aim of this work was threefold: (a) to screen for Wnt expressed by murine pancreas/islet cells, (b) to investigate whether the Wnt gene expression profile can be changed in hyperplastic islets from type 2 prediabetic mice (fed a high-fat diet), and (c) to verify whether soluble factors (namely Wnts) released by pancreatic islets affect insulin secretion and proliferation of a beta-cell line in vitro condition. The majority of the Wnt subtypes are expressed by islet cells, such as Wnts 2, 2b, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, and 11, while in the whole pancreas homogenates were found the same subtypes, except Wnts 3, 6, 7a, and 7b. Among all the Wnts, the Wnts 3a and 5b showed a significantly increased gene expression in hyperplastic islets from prediabetic mice compared with those from control mice. Furthermore, we observed that coculture with hyperplastic or nonhyperplastic islets did not change the secretory function of the mouse insulinoma clone 6 (MIN6) beta cells but induced a significant increase in cell proliferation in this lineage, which was partially blocked by the IWR-1 and IWP-2 Wnt inhibitors. In conclusion, we demonstrated that murine pancreas/islet cells can secrete Wnts, and that islet-released Wnts may participate in the regulation of beta-cell mass under normal and prediabetic conditions.  相似文献   

3.
4.
5.
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.  相似文献   

6.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin.  相似文献   

7.
The overactivation of canonical Wnt/β‐catenin pathway and the maintenance of cancer stem cells (CSCs) are essential for the onset and malignant progression of most human cancers. However, their regulatory mechanism in colorectal cancer (CRC) has not yet been well demonstrated. Low‐density lipoprotein receptor‐related protein 5 (LRP5) has been identified as an indispensable co‐receptor with frizzled family members for the canonical Wnt/β‐catenin signal transduction. Herein, we show that activation of LRP5 gene promotes CSCs‐like phenotypes, including tumorigenicity and drug resistance in CRC cells, through activating the canonical Wnt/β‐catenin and IL‐6/STAT3 signalling pathways. Clinically, the expression of LRP5 is upregulated in human CRC tissues and closely associated with clinical stages of patients with CRC. Further analysis showed silencing of endogenous LRP5 gene is sufficient to suppress the CSCs‐like phenotypes of CRC through inhibiting these two pathways. In conclusion, our findings not only reveal a regulatory cross‐talk between canonical Wnt/β‐catenin signalling pathway, IL‐6/STAT3 signalling pathway and CD133‐related stemness that promote the malignant behaviour of CRC, but also provide a valuable target for the diagnosis and treatment of CRC.  相似文献   

8.
Wnt5a是Wnt蛋白家族中的成员之一,在细胞成熟、胚胎发育等过程中发挥着重要作用。研究表明Wnt5a的表达调控及其信号通路与血管新生密切相关,并且在血管新生性相关疾病中发挥了重要作用。本文从Wnt5a与其相关信号转导通路对血管新生的影响以及分子机制等方面进行阐述和展望,旨在为以Wnt5a为靶点进行血管新生性疾病的防治提供理论依据。  相似文献   

9.
Wu W  Glinka A  Delius H  Niehrs C 《Current biology : CB》2000,10(24):1611-1614
Wnts are secreted glycoproteins implicated in diverse processes during embryonic patterning in metazoans. They signal through seven-transmembrane receptors of the Frizzled (Fz) family [1] to stabilise beta-catenin [2]. Wnts are antagonised by several extracellular inhibitors including the product of the dickkopf1 (dkk1) gene, which was identified in Xenopus embryos and is a member of a multigene family. The dkk1 gene acts upstream of the Wnt pathway component dishevelled but its mechanism of action is unknown [3]. Although the function of Dkk1 as a Wnt inhibitor in vertebrates is well established [3-6], the effect of other Dkks on the Wnt/beta-catenin pathway is unclear. Here, we report that a related family member, Dkk2, activates rather than inhibits the Wnt/beta-catenin signalling pathway in Xenopus embryos. Dkk2 strongly synergised with Wnt receptors of the Fz family to induce Wnt signalling responses. The study identifies Dkk2 as a secreted molecule that is able to activate Wnt/beta-catenin signalling. The results suggest that a coordinated interplay between inhibiting dkk1 and activating dkk2 can modulate Fz signalling.  相似文献   

10.
The Wnt pathway is the most important cascade in the nervous system; evidence has indicated that deregulation of the Wnt pathway induced pathogenic hallmarks of neurodegenerative diseases. Glycogen synthase kinase-3β (GSK-3β) as the main member of the Wnt pathway increases tau inclusions, the main marker in the neurodegenerative diseases. Phosphorylated tau is observed in the pre-tangle of the neurons in the early stage of neurodegenerative diseases. The researchers always try to improve pharmacological approaches of new therapeutic strategies to the treatment of neurodegenerative diseases that are required to represent a significant entry point by understanding the theoretical interactions of the molecular pathways. In this review, we have discussed the recent knowledge about the canonical and non-canonical Wnt signalling pathway, GSK-3β, Wnt/β-catenin antagonists, tau phosphorylation, and their important roles in the neurodegenerative diseases.  相似文献   

11.
12.
Recent studies indicate a role for Wnt signalling in regulating lens cell differentiation (Stump et al., 2003). To further our understanding of this, we investigated the expression patterns of Wnts and Wnt signalling regulators, the Dickkopfs (Dkks), during murine lens development. In situ hybridisation showed that Wnt5a, Wnt5b, Wnt7a, Wnt7b, Wnt8a and Wnt8b genes are expressed throughout the early lens primordia. At embryonic day 14.5 (E14.5), Wnt5a, Wnt5b, Wnt7a, Wnt8a and Wnt8b are reduced in the primary fibres, whereas Wnt7b remains strongly expressed. This trend persists up to E15.5. At later embryonic stages, Wnt expression is predominantly localised to the epithelium and elongating cells at the lens equator. As fibre differentiation progresses, Wnt expression becomes undetectable in the cells of the lens cortex. The one exception is Wnt7b, which continues to be weakly expressed in cortical fibres. This pattern of expression continues through to early postnatal stages. However, by postnatal day 21 (P21), expression of all Wnts is distinctly weaker in the central lens epithelium compared with the equatorial region. This is most notable for Wnt5a, which is barely detectable in the central lens epithelium at P21. Dkk1, Dkk2 and Dkk3 have similar patterns of expression to each other and to the majority of the Wnts during lens development. This study shows that multiple Wnt and Dkk genes are expressed during lens development. Expression is predominantly in the epithelial compartment but is also associated, particularly in the case of Wnt7b, with early events in fibre differentiation.  相似文献   

13.
Wnt proteins play important roles during vertebrate and invertebrate development. They obviously have the ability to activate different intracellular signalling pathways. Based on the characteristic intracellular mediators used, these are commonly described as the Wnt/beta-catenin, the Wnt/calcium and the Wnt/Jun N-terminal kinase pathways (also called planar cell polarity pathway). In the past, these different signalling events were mainly described as individual and independent signalling branches. Here, we discuss the possibility that Wnt proteins activate a complex intracellular signalling network rather than individual pathways and suggest a graph representation of this network. Furthermore, we discuss different ways of how to predict the specific outcome of an activation of this network in a particular cell type, which will require the use of mathematical models. We point out that the use of deterministic approaches via the application of differential equations is suitable to model only small aspects of the whole network and that more qualitative approaches are possibly a suitable starting point for the prediction of the global behaviour of such large protein interaction networks.  相似文献   

14.
Diabetes mellitus (DM) and breast cancer (BC) can simultaneously occur in the same patient populations, but the molecular relationship between them remains unknown. In this study, we constructed genetic networks and used modularized analysis approaches to investigate the multi‐dimensional characteristics of two diseases and one disease subtype. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to validate potential subnetworks and to divide the modules, respectively. A total of 793 DM‐related genes, 386 type 2 diabetes (T2DM) genes and 873 BC‐related genes were identified from the Online Mendelian Inheritance in Man database. For DM and BC, a total of 99 overlapping genes, 9 modules, 29 biological processes and 7 pathways were identified. Meanwhile, for T2DM and BC, 56 overlapping genes, 5 modules, 20 biological processes and 12 pathways were identified. Based on the Gene Ontology functional enrichment analysis of the top 10 non‐overlapping modules of the two diseases, 10 biological functions and 5 pathways overlapped between them. The glycosphingolipid and lysosome pathways verified molecular mechanisms of cell death related to both DM and BC. We also identified new biological functions of dopamine receptors and four signalling pathways (Parkinson's disease, Alzheimer's disease, Huntington's disease and long‐term depression) related to both diseases; these warrant further investigation. Our results illustrate the landscape of the novel molecular substructures between DM and BC, which may support a new model for complex disease classification and rational therapies for multiple diseases.  相似文献   

15.
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment.  相似文献   

16.
17.
18.
19.
Wnt proteins are members of a highly conserved family of signalling molecules that play a central role in development and disease. During the past years, the different signalling pathways that are triggered by Wnt proteins have been studied in detail, but it is still largely unknown how a functional Wnt protein is produced and secreted. The recent finding that Wnt proteins are post-translationally modified and the discovery of the Wnt binding protein Wntless and its trafficking by the retromer complex show that Wnt secretion is a complex and highly regulated process. In this review, we will give an overview of the Wnt maturation and secretion pathway and discuss how this process may influence the spreading and signalling activity of Wnt.  相似文献   

20.
Wnt proteins elevate expression of the CCN family. For example, Wnt10b induces the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2) in NIH 3T3 fibroblasts. Wnt10b activates the CCN2 minimal promoter. In this report, we map the Wnt10b response element in the CCN2 minimal promoter to the previously identified Smad response element. These results suggest that Wnts may cross-talk with the Smad signaling pathway to induce fibrotic responses in fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号