首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The L-type voltage-gated calcium channels (L-VGCCs) in avian retinal cone photoreceptors are under circadian control, in which the protein expression of the α1 subunits and the current density are greater at night than during the day. Both Ras-mitogen-activated protein kinase (MAPK) and Ras-phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathways are part of the circadian output that regulate the L-VGCC rhythm, while cAMP-dependent signaling is further upstream of Ras to regulate the circadian outputs in photoreceptors. However, there are missing links between cAMP-dependent signaling and Ras in the circadian output regulation of L-VGCCs. In this study, we report that calcineurin, a Ca2+/calmodulin-dependent serine (ser)/threonine (thr) phosphatase, participates in the circadian output pathway to regulate L-VGCCs through modulating both Ras-MAPK and Ras-PI3K-AKT signaling. The activity of calcineurin, but not its protein expression, was under circadian regulation. Application of a calcineurin inhibitor, FK-506 or cyclosporine A, reduced the L-VGCC current density at night with a corresponding decrease in L-VGCCα1D protein expression, but the circadian rhythm of L-VGCCα1D mRNA levels were not affected. Inhibition of calcineurin further reduced the phosphorylation of ERK and AKT (at thr 308) and inhibited the activation of Ras, but inhibitors of MAPK or PI3K signaling did not affect the circadian rhythm of calcineurin activity. However, inhibition of adenylate cyclase significantly dampened the circadian rhythm of calcineurin activity. These results suggest that calcineurin is upstream of MAPK and PI3K-AKT but downstream of cAMP in the circadian regulation of L-VGCCs.  相似文献   

2.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells.  相似文献   

3.
Slingshot (SSH) phosphatases and LIM kinases (LIMK) regulate actin dynamics via a reversible phosphorylation (inactivation) of serine 3 in actin-depolymerizing factor (ADF) and cofilin. Here we demonstrate that a multi-protein complex consisting of SSH-1L, LIMK1, actin, and the scaffolding protein, 14-3-3zeta, is involved, along with the kinase, PAK4, in the regulation of ADF/cofilin activity. Endogenous LIMK1 and SSH-1L interact in vitro and co-localize in vivo, and this interaction results in dephosphorylation and downregulation of LIMK1 activity. We also show that the phosphatase activity of purified SSH-1L is F-actin dependent and is negatively regulated via phosphorylation by PAK4. 14-3-3zeta binds to phosphorylated slingshot, decreases the amount of slingshot that co-sediments with F-actin, but does not alter slingshot activity. Here we define a novel ADF/cofilin phosphoregulatory complex and suggest a new mechanism for the regulation of ADF/cofilin activity in mediating changes to the actin cytoskeleton.  相似文献   

4.
Increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is associated with cellular insulin resistance. We have recently identified serine 318 (Ser318) as a novel protein kinase C-zeta (PKC-zeta)-dependent phosphorylation site within IRS-1. As other kinases may phosphorylate at this serine residue as well, we aimed to identify such kinases in the present study. In C2C12 myotubes, exposure to insulin or phorbol ester markedly increased Ser318 phosphorylation. In contrast, high glucose, tumor necrosis factor-alpha, and free fatty acids did not provoke Ser318 phosphorylation. JNK and the PI 3-kinase/mTOR pathway were found to be implicated in insulin-induced Ser318 phosphorylation, but not in TPA-stimulated phosphorylation that was, at least partly, mediated by classical or novel PKC. In conclusion, with JNK and the PI 3-kinase/mTOR pathway as mediators of insulin-induced Ser318 phosphorylation, we have identified kinases that have previously been reported to play key roles in phosphorylation of other serine residues in IRS-1.  相似文献   

5.
Internalization of beta-adrenergic receptors (betaARs) occurs by the sequential binding of beta-arrestin, the clathrin adaptor AP-2, and clathrin. D-3 phosphoinositides, generated by the action of phosphoinositide 3-kinase (PI3K) may regulate the endocytic process; however, the precise molecular mechanism is unknown. Here we demonstrate that betaARKinase1 directly interacts with the PIK domain of PI3K to form a cytosolic complex. Overexpression of the PIK domain displaces endogenous PI3K from betaARK1 and prevents betaARK1-mediated translocation of PI3K to activated beta2ARs. Furthermore, disruption of the betaARK1/PI3K interaction inhibits agonist-stimulated AP-2 adaptor protein recruitment to the beta2AR and receptor endocytosis without affecting the internalization of other clathrin dependent processes such as internalization of the transferrin receptor. In contrast, AP-2 recruitment is enhanced in the presence of D-3 phospholipids, and receptor internalization is blocked in presence of the specific phosphatidylinositol-3,4,5-trisphosphate lipid phosphatase PTEN. These findings provide a molecular mechanism for the agonist-dependent recruitment of PI3K to betaARs, and support a role for the localized generation of D-3 phosphoinositides in regulating the recruitment of the receptor/cargo to clathrin-coated pits.  相似文献   

6.
Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2α) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2α mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2α was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2α can modulate HCC cell growth.  相似文献   

7.
Upon growth factor stimulation, PAK1 is recruited to the plasma membrane and activated by a mechanism that requires its phosphorylation at Ser-223 by the protein kinase CK2. However, the upstream signaling molecules that regulate this phosphorylation event are not clearly defined. Here, we demonstrate a major role of the CK2α-interacting protein CKIP-1 in activation of PAK1. CK2α, CKIP-1, and PAK1 are translocated to membrane ruffles in response to the epidermal growth factor (EGF), where CKIP-1 mediates the interaction between CK2α and PAK1 in a PI3K-dependent manner. Consistently, PAK1 mediates phosphorylation and modulation of the activity of p41-Arc, one of its plasma membrane substrate, in a fashion that requires PI3K and CKIP-1. Moreover, CKIP-1 knockdown or PI3K inhibition suppresses PAK1-mediated cell migration and invasion, demonstrating the physiological significance of the PI3K-CKIP-1-CK2-PAK1 signaling pathway. Taken together, these findings identify a novel mechanism for the activation of PAK1 at the plasma membrane, which is critical for cell migration and invasion.  相似文献   

8.
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.  相似文献   

9.
Cellular mechanisms that regulate the replication of hepatitis C virus (HCV) RNA are poorly understood. p21-activated kinase 1 (PAK1) is a serine/threonine kinase that has been suggested to participate in antiviral signaling. We studied its role in the cellular control of HCV replication. Transfection of PAK1-specific small interfering RNA enhanced viral RNA and protein abundance in established replicon cell lines as well as cells infected with chimeric genotype 1a/2a HCV, despite reducing cellular proliferation, suggesting specific regulation of HCV replication. PAK1 knockdown did not reduce interferon regulatory factor 3-dependent gene expression, indicating that this regulation is independent of the retinoic acid-inducible gene I/interferon regulatory factor 3 pathway. On the other hand, LY294002 and rapamycin abolished PAK1 phosphorylation and enhanced HCV abundance, suggesting that the mammalian target of rapamycin (mTOR) is involved in PAK1 regulation of HCV. Small interfering RNA knockdown of the mTOR substrate p70 S6 kinase abrogated PAK1 phosphorylation and enhanced HCV RNA abundance, whereas overexpression of a constitutively active alternate substrate, eukaryotic translation initiation factor 4E-binding protein 1, increased cap-independent viral translation and viral RNA abundance without influencing PAK1 phosphorylation. Similar data indicated that mTOR is regulated by both phosphatidylinositol 3-kinase/Akt and ERK. Taken together, the data indicate that p70 S6 kinase activates PAK1 and contributes to phosphatidylinositol 3-kinase- and ERK-mediated regulation of HCV RNA replication.  相似文献   

10.
Synovial fibroblasts (SFs) of rheumatoid arthritis (RA) are phenotypically aggressive, typically progressing into arthritic cartilage degradation. Throughout our study, we made explorations into the effects of microRNA-135a (miR-135a) on the SFs involved in RA by mediating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway via regulation of phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2). The expression of PI3K was higher, the expression of PIK3R2 was lower, and AKT was phosphorylated in the RA synovial tissues, relative to the levels found in the normal synovial tissues. We predicted miR-135a to be a candidate miR targeting PIK3R2 using an online website, microRNA.org, which was verified with a dual-luciferase reporter gene assay. Subsequently, high miR-135a expression was observed in RA synovial tissues. To study the effect of the interaction between miR-135a and PIK3R2 in RA, the SFs isolated from RA samples were cultured and transfected with mimic, inhibitor, and small interfering RNA. The proliferation, invasion, and apoptosis of the SFs were detected after the transfection. The cells transfected with miR-135a inhibitor showed inhibited cell proliferation, migration, and invasion, while also displaying promoted cell apoptosis, G0/G1 cell ratio, and decreased S cell ratio, through upregulation of PIK3R2 and inactivation of the PI3K/AKT signaling pathway. These findings provided evidence that downregulation of miR-135a inhibits proliferation, migration, and invasion and promotes apoptosis of SFs in RA by upregulating the PIK3R2 coupled with inactivating the PI3K/AKT signaling pathway. The downregulation of miR-135a might be a potential target in the treatment of RA.  相似文献   

11.
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degradation, in which elevated chondrocyte apoptosis and catabolic activity play an important role. MicroRNA‐155 (miR‐155) has recently been shown to regulate apoptosis and catabolic activity in some pathological circumstances, yet, whether and how miR‐155 is associated with OA pathology remain unexplored. We report here that miR‐155 level is significantly up‐regulated in human OA cartilage biopsies and also in primary chondrocytes stimulated by interleukin‐1β (IL‐1β), a pivotal pro‐catabolic factor promoting cartilage degradation. Moreover, miR‐155 inhibition attenuates and its overexpression promotes IL‐1β‐induced apoptosis and catabolic activity in chondrocytes in vitro. We also demonstrate that the PIK3R1 (p85α regulatory subunit of phosphoinositide 3‐kinase (PI3K)) is a target of miR‐155 in chondrocytes, and more importantly, PIK3R1 restoration abrogates miR‐155 effects on chondrocyte apoptosis and catabolic activity. Mechanistically, PIK3R1 positively regulates the transduction of PI3K/Akt pathway, and a specific Akt inhibitor reverses miR‐155 effects on promoting chondrocyte apoptosis and catabolic activity, phenocopying the results obtained via PIK3R1 knockdown, hence establishing that miR‐155 promotes chondrocyte apoptosis and catabolic activity through targeting PIK3R1‐mediated PI3K/Akt pathway activation. Altogether, our study discovers novel roles and mechanisms of miR‐155 in regulating chondrocyte apoptosis and catabolic activity, providing an implication for therapeutically intervening cartilage degradation and OA progression.  相似文献   

12.
There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer.In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells.Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.  相似文献   

13.
Malignant conversion of BRAF‐ or NRAS‐mutated melanocytes into melanoma cells can be promoted by PI3′‐lipid signaling. However, the mechanism by which PI3′‐lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS‐ or BRAF‐mutated melanoma cells that co‐express mutationally activated PIK3CA, we explored the contribution of PI3′‐lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α‐selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single‐agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1‐mediated effects on ribosomal protein S6 and 4E‐BP1 phosphorylation in an AKT‐dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H/PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA‐mutated melanoma proliferation.  相似文献   

14.
ABSTRACT: BACKGROUND: While there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene encodes the PI3K regulatory subunit p55 gamma, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians. METHODS: Primary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS. RESULTS: PIK3R3 was significantly up-regulated in GC specimens (n=126, p<0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. IPA pathway analysis showed that PIK3R3 promoted cellular growth and proliferation. Knockdown of PIK3R3 decreased the growth of GC cells, induced G0/G1 cell cycle arrest, decreased retinoblastoma protein (Rb) phosphorylation, cyclin D1, and PCNA expression. CONCLUSION: Using a combination of genetic, bioinformatic, and molecular biological approaches, we showed that PIK3R3 was up-regulated in GC and promoted cell cycle progression and proliferation; and thus may be a potential new therapeutic target for GC.  相似文献   

15.
Sustained smooth-muscle contraction or its experimental counterpart, Ca2+ sensitization, by G(q/13)-coupled receptor agonists is mediated via RhoA-dependent inhibition of MLC (myosin light chain) phosphatase and MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation by a Ca2+-independent MLCK (MLC kinase). The present study identified the corresponding pathways initiated by G(i)-coupled receptors. Somatostatin acting via G(i)1-coupled sstr3 receptor, DPDPE ([D-Pen2,D-Pen5]enkephalin; where Pen is penicillamine) acting via G(i)2-coupled delta-opioid receptors, and cyclopentyl adenosine acting via G(i)3-coupled adenosine A1 receptors preferentially activated PI3K (phosphoinositide 3-kinase) and ILK (integrin-linked kinase), whereas ACh (acetylcholine) acting via G(i)3-coupled M2 receptors preferentially activated PI3K, Cdc42 (cell division cycle 42)/Rac1, PAK1 (p21-activated kinase 1) and p38 MAPK (mitogen-activated protein kinase). Only agonists that activated ILK induced sustained CPI-17 (protein kinase C potentiated inhibitor 17 kDa protein) phosphorylation at Thr38, MLC20 phosphorylation at Ser19, and contraction, consistent with recent evidence that ILK can act as a Ca2+-independent MLCK capable of phosphorylating the MLC phosphatase inhibitor, CPI-17, at Thr38. ILK activity, and CPI-17 and MLC20 phosphorylation were inhibited by LY294002 and in muscle cells expressing ILK(R211A) or treated with siRNA (small interfering RNA) for ILK. ACh acting via M2 receptors activated ILK, and induced CPI-17 and MLC20 phosphorylation and muscle contraction, but only after inhibition of p38 MAPK; all these responses were inhibited in cells expressing ILK(R211A). Conversely, ACh activated PAK1, a step upstream of p38 MAPK, whereas the three other agonists did so only in cells transfected with ILK(R211A) or siRNA for ILK. The results demonstrate reciprocal inhibition between two pathways downstream of PI3K, with ILK inhibiting PAK1, and p38 MAPK inhibiting ILK. Sustained contraction via G(i)-coupled receptors is dependent on CPI-17 and MLC20 phosphorylation by ILK.  相似文献   

16.
17.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

18.
Internal mammary artery (IMA) coronary artery bypass grafts (CABG) are remarkably resistant to intimal hyperplasia (IH) as compared to saphenous vein (SV) grafts following aorto-coronary anastomosis. The reason behind this puzzling difference still remains an enigma. In this study, we examined the effects of IGF-1 stimulation on the PI3K-AKT/PKB pathway mediating proliferation of smooth muscle cells (SMCs) of IMA and SV origin and the specific contribution of phosphatase and tensin homologue (PTEN) in regulating the IGF-1-PI3K-AKT/PKB axis under these conditions. Mitogenic activation with IGF-1, time-dependently stimulated the phosphorylation of PI3K and AKT/PKB in the SV SMCs to a much greater extent than the IMA. Conversely, PTEN was found to be significantly more active in IMA SMCs. Transient overexpression of PTEN in SMCs of SV and IMA inhibited AKT/PKB activity and upstream of AKT/PKB, caused a reduction of IGF-1 receptors. Downstream, PTEN overexpression in SV SMCs induced the transactivation of tumour suppressor protein p53 by down-regulating the expression of its inhibitor MDM2. However, PTEN overexpression had no significant effect on MDM2 and p53 expression in IMA SMCs. PTEN overexpression inhibited IGF-1-induced SMC proliferation in both SV and IMA. PTEN suppression, induced by siRNA transfection of IMA SMCs diminished the negative regulation of PI3K-PKB signalling leading to greater proliferative response induced by IGF-1 stimulation. Thus, we show for the first time that early inactivation of PTEN in SV SMCs leads to temporally increased activity of the pro-hyperplasia PI3K-AKT/PKB pathway leading to IH-induced vein graft occlusion. Therefore, modulation of the PI3K-AKT/PKB pathway via PTEN might be a novel and effective strategy in combating SV graft failure following CABG.  相似文献   

19.
20.
The second messenger ceramide (N-alkylsphingosine) has been implicated in a host of cellular processes including growth arrest and apoptosis. Ceramide has been reported to have effects on both protein kinases and phosphatases and may constitute an important component of stress response in various tissues. We have examined in detail the relationship between ceramide signaling and the activation of an important signaling pathway, phosphatidylinositol (PI) 3-kinase and its downstream target, protein kinase B (PKB). PKB activation was observed following stimulation of cells with the cytokine granulocyte-macrophage colony-stimulating factor. Addition of cell-permeable ceramide analogs, C(2)- or C(6)-ceramide, caused a partial loss (50-60%) of PKB activation. This reduction was not a result of decreased PI(3,4,5)P(3) or PI(3,4)P(2) generation by PI 3-kinase. Two residues of PKB (threonine 308 and serine 473) require phosphorylation for maximal PKB activation. Serine 473 phosphorylation was consistently reduced by treatment with ceramide, whereas threonine 308 phosphorylation remained unaffected. In further experiments, ceramide appeared to accelerate serine 473 dephosphorylation, suggesting the activation of a phosphatase. Consistent with this, the reduction in serine 473 phosphorylation was inhibited by the phosphatase inhibitors okadaic acid and calyculin A. Surprisingly, threonine 308 phosphorylation was abolished in cells treated with these inhibitors, revealing a novel mechanism of regulation of threonine 308 phosphorylation. These results demonstrate that PI 3-kinase-dependent kinase 2-catalyzed phosphorylation of serine 473 is the principal target of a ceramide-activated phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号