首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae), is the most important pest of maize in many countries. Entomopathogenic viruses mainly Baculoviruses family are excellent biological control agents and therefore a viable alternative for managing this pest. The aim of this study was to determine the biological activity of eight native nucleopolyhedrovirus (NPVs) against FAW larvae. Additionally, two of the most virulent isolates (SfCH32 and SfCH15) were characterized biologically by bioassays to estimate their median lethal dose (LD50) and median lethal time (LT50), morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and molecularly by restriction enzymes. Three (SfCH15, SfCH18 and SfCH32) of the eight tested native nucleopolyhedrovirus isolates caused mortalities ˃98% at 168-hr post-inoculation (hpi) with a dose of 9.2 × 104 OBs/larva. SfCH15 and SfCH32 isolates showed occlusion bodies (OBs) of irregular shape and size (1.02–2.24 μm). The SfCH15 and SfCH32 isolates showed similar median lethal dose (5.6 × 102–6.4 × 102 OBs/larva). The lowest median lethal time (114.5 hpi) was observed with the SfCH15 isolate at the highest concentration (2.5 × 106 OBs/larva). The DNA restriction profiles for SfCH15 and SfCH32 were different, with their genome size being ~128,000 bp and 132,000 bp, respectively. SfCH15 and SfCH32 isolates showed similar morphological characteristics and the highest virulence against fall armyworm. This study showed that native isolates were highly virulent against S. frugiperda larvae, being similar to other reported strains; however, field studies are required to confirm their insecticidal effect.  相似文献   

2.
Management of the banana root borer (BRB), Cosmopolites sordidus (Germar; Coleoptera: Curculionidae), remains a challenge in banana and plantain production worldwide. Synthetic pesticides remain the most widely used solution while mycoinsecticides are increasingly being recommended. In this study, we selected indigenous isolates of Beauveria bassiana and Metarhizium anisopliae collected from plantain fields in Cameroon, and tested them in the laboratory for their viability, pathogenicity and virulence against all C. sordidus life stages. Of 13 isolates initially screened for spore germination and pathogenicity to adult weevils in conidial suspension of 3.2 × 108 conidia/ml, eight isolates with high to moderate germination and highest weevil mortality were selected for dose–response bioassays with four concentrations per isolate: 3.2 × 102, 3.2 × 104, 3.2 × 106 and 3.2 × 108 conidia/ml. The virulent isolates from adult bioassays were tested with eggs, larva and pupae in conidial suspension of 3.2 × 108 conidia/ml. Isolates performance depended on insect life stage with significantly high pathogenicity and virulence against larval, pupa and adult stages. The Beauveria isolate BIITAC6.2.2 caused the highest mortality rates followed by MIITAC1.1.5. Lethal times and lethal concentrations were relatively low for the three M. anisopliae isolates and three B. bassiana isolates which were the best isolates in almost all insect life stages. Apart from being effective in multiple life stages, these isolates were transmitted horizontally from one stage to another when eggs and pupae were treated. The implication of these findings for integrated management of the BRB, and potential biopesticides development and commercialization are discussed.  相似文献   

3.
The insecticidal activity of Beauveria bassiana GHA derived from a commercial mycoinsecticide BotaniGard ES against Frankliniella occidentalis was determined in a bioassay by dipping the female adults into a conidial suspension. The 90% lethal concentration of B. bassiana GHA was estimated to be 9.7 × 106 conidia/ml. The lethal times for achieving 90% mortality of thrips inoculated with a 1/500-diluted solution of BotaniGard ES and a 107.5 (3.16 × 107) conidia/ml suspension of B. bassiana GHA were estimated to be five and six days, respectively. When the treated thrips were exposed to a high relative humidity (RH) of over 99% for various periods and then transferred to 60% RH, the requisite lengths of the high-humidity period to achieve 90% mortality of the thrips at six days after inoculation were estimated to be 46 and 47 h in BotaniGard ES and B. bassiana GHA, respectively. Fungal multiplication in the thrips was detected between 48 to 60 h after inoculation by measuring Beauveria-specific DNA in the host following inoculation with a B. bassiana GHA suspension of 107.5 conidia/ml using a real-time quantitative PCR. The mycelial growth in the host hemocoel was not influenced by the low-humidity condition.  相似文献   

4.
Forty-three isolates of the entomopathogenic fungus Beauveria bassiana were screened for virulence against second-instar larvae of diamondback moth (Plutella xylostella) (DBM), European corn borer (Ostrinia nubilalis) (ECB), corn earworm (Helicoverpa zea) (CEW), and fall armyworm (Spodoptera frugiperda) (FAW); 30 of these isolates were tested against beet armyworm (Spodoptera exigua) (BAW). Highly virulent isolates were also tested against black cutworm (Agrotis ipsilon) (BCW), and the most virulent isolate was also assayed against imported cabbage worm (Pieris rapae) (ICW) and cabbage looper (Trichoplusia ni) (CL). All lepidopteran species tested were susceptible to B. bassiana. Corn earworm and beet armyworm were most susceptible to fungal infection, and fall armyworm was least susceptible. Limited testing suggested low susceptibility of black cutworm and cabbage looper. B. bassiana isolate 1200 exhibited virulence against all pest species greater than or equal to commercial strain GHA of B. bassiana currently registered in the USA as BotaniGard®. In assays in which larvae were topically sprayed and maintained on the treated substrate for 24 h at 100% relative humidity, 6-day (25 °C) median lethal concentrations (LC50s) of this isolate against CEW, BAW, DBM, FAW, ICW, ECB, CL, and BCW were 4, 5, 7, 11, 12, 98, 125, and 273 conidia/mm2, respectively. The respective LC50s of commercial strain GHA against these pest species were 9, 67, 97, 1213, 29, 1668, 541, and 3504 conidia/mm2. Use of LC50 versus median lethal concentration ratios (comparing LC50s of each isolate to a “standard” strain) generated similar rankings of isolate virulence. Results from parametric ANOVAs of log LC50 values followed by Tukey HSD multiple comparisons tests and those from Kruskal-Wallis nonparametric analyses followed by sequential Bonferroni tests for means comparisons were nearly identical.  相似文献   

5.
The virulence of 20 isolates of Beauveria bassiana (Balsamo) Vuillemin to larvae of the leafminer, Aproaerema modicella, was tested in the laboratory. Leafminer larvae were sprayed with a standard concentration of 1×108 condia/mL of each B. bassiana isolate. All the B. bassiana isolates tested were pathogenic to A. modicella and the mortality varied between 16.7 and 68.9%. Beauveria bassiana isolate B2 was found to be the most virulent followed by isolate B4 which resulted in 59% mortality. Beauveria isolate B2 was selected for dose–response mortality studies with four different doses (1×102, 1×104, 1×106 and 1×108 conidia/mL). Among the various doses tested, 1×108 conidia/mL produced the highest mortality (70.7%). In addition, morphogenesis of the insect pest in all stages, larval, pupal and adult was greatly affected due to fungal infection. Further, B. bassiana isolate B2 and two Pseudomonas fluorescens strains, TDK1 and Pf1 were tested alone and in combination for suppression of groundnut leafminer and collar rot disease and promotion of plant growth and yield both under glasshouse and field conditions. The mixture of B. bassiana and P. fluorescens strains significantly reduced the leafminer and collar rot disease incidences when applied as talc-based formulation through seed, soil and foliar application under glasshouse and field conditions.  相似文献   

6.
Twelve fungal strains including Lecanicillium muscarium (Petch.) Zare and Gams, Isaria farinosa (Holmsk.) Fr., Fusarium sp., Beauveria bassiana Sensu Lato and Beauveria sp. were isolated from larvae and adults of D. micans. In addition, virulence of these isolates against this pest was determined. Conidia suspensions of 1×106 conidia mL–1 were applied to larvae and adults. The highest mortality and mycosis for larvae were obtained from isolate ARSEF 9271 (Beauveria bassiana) with 90% mortality and mycosis within 10 days. ARSEF 9271 also produced 93% mortality and mycosis in adults. On the other hand, the highest mortality and mycosis for adults were obtained with isolate ARSEF 9272 (Beauveria sp.), with 100% mortality and 80% mycosis within 10 days. These results indicate that isolates ARSEF 9271 and ARSEF 9272 seem to be the most promising potential fungal biocontrol agents against D. micans.  相似文献   

7.
Two endemic scarab pests, Schizonycha affinis Boheman and Hypopholis sommeri Burmeister (Coleoptera: Melolonthinae) have increased in prevalence in the sugarcane producing regions of the KwaZulu‐Natal Midlands, South Africa. The crop losses associated with their feeding, the failure of chemical insecticides applied for their control, and the recent discovery of Beauveria brongniartii (Sacc.) Petch (Ascomycota: Cordycipitaceae) epizootics on these pests, have generated interest in the development of a mycoinsecticide targeting adults and larvae of these species. Previous research, using microsatellite markers, identified low levels of genetic diversity among isolates of B. brongniartii collected from two field sites where epizootics occurred. The virulence of 21 of these closely related B. brongniartii isolates and two isolates of Beauveria bassiana (Balsamo) Vuillemin was evaluated. Bioassays were conducted against adults and larvae of S. affinis, and adult Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) as a surrogate test insect. The closely related B. brongniartii isolates varied significantly in their virulence towards both S. affinis (50.1–95% mortality) and T. molitor (39–74% mortality), with a number of these not highly virulent against either of these insect species. Those isolates sharing a haplotype did not vary in virulence. Adults of S. affinis were more susceptible than larvae to isolates of B. brongniartii. The median lethal concentration (LC50) required to kill half the adult S. affinis test insects was 7.65 × 106 conidia per millilitre. Schizonycha affinis second instar larvae had a median survival time of 17.5 days when exposed to some B. brongniartii isolates; however, third instars survived significantly longer with a median of 21 days. Third instars exposed to the highest concentration of B. brongniartii isolate HHWG1 survived for a median time of 15 days. Bioassays supported the finding that genetically closely related isolates may vary in their virulence, even if they were obtained from the same field epizootics.  相似文献   

8.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

9.
Bactericera cockerelli (Sulc.) is an important pest of solanaceous crops and a vector of the pathogen Candidatus Liberibacter psyllaurous. Biocontrol of this pest has been attempted with either entomopathogenic fungi or the parasitoid Tamarixia triozae (Burks), but prior to this study, their potential impact in combination had not been studied. The aim of the present study was to evaluate T. triozae parasitism rates on B. cockerelli nymphs that were previously infected for different periods of time by three isolates of Beauveria bassiana (Bals.) Vuill. Two native isolates (BB40 and BB42) and one commercial isolate (GHA) were used. The virulence of these isolates was first estimated against B. cockerelli and T. triozae. LC50 values for the native isolates BB40 and BB42 against B. cockerelli were 9.5 × 105 and 2.42 × 106 conidia mL−1 respectively; they were significantly more virulent than isolate GHA with an LC50 of 1.97 × 107 conidia mL−1. However, isolate GHA was significantly more virulent against T. triozae with an LC50 of 1.11 × 107 conidia mL−1 compared with LC50s of 1.49 × 107 and 1.14 × 108 conidia mL−1 for the native isolates BB40 and BB42 respectively. Groups of nymphs were then inoculated with LC20, LC50 or LC90 concentrations of each isolate and presented to T. triozae as hosts either on the day of inoculation or 1, 2, 3, 4, 5, 6 days after inoculation. Subsequent levels of parasitism were recorded. Overall, parasitism rates were similar in inoculated and control nymphs. No parasitism occurred in nymphs 6 days after fungal inoculation. Parasitoids used to parasitize uninoculated B. cockerelli nymphs survived significantly longer (7.8 days) than parasitoids that had been used to parasitize fungus-inoculated nymphs (7.3 days). This suggests an inability of the parasitoid to avoid infection when foraging on inoculated nymphs. In conclusion, although the parasitism rate in control and fungus-treated nymphs was similar, suggesting a combination of both biological control agents is possible, we believe there are also negative implications for the parasitoid because its survival was greatly reduced after attacking infected nymphs.  相似文献   

10.
Trade‐offs between virulence (defined as the ability to infect a resistant host) and life‐history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life‐history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations.  相似文献   

11.
Abstract The red turpentine beetle (RTB), Dendroctonus valens LeConte, as a destructive invasive pest, has become one of the most economically important forest pest in China. Effective control measures are desperately needed. Entomopathogenic fungi, such as Beauveria bassiana, have shown great potential for the management of some bark beetle species. In this study, 12 isolates of B. bassiana from bark beetle were examined for biological characteristics and virulence, to assess their potential as biocontrol agents for RTB. There were significant differences (at P= 0.05) in colony growth rate, conidial yield, conidial germination, tolerance to UV light and extracellular proteases activity among the tested B. bassiana isolates. Isolates, including Bb1801, Bb1906, Bb789 and Bb773, exhibited the best characteristics, because they have faster hyphal growth rate, higher spore production and faster spore germination, higher UV tolerance and protease (Pr1) production. The results of a pathogenicity test of B. bassiana on RTB larvae showed that most isolates of B. bassiana have demonstrated high efficacy and the highest virulent isolate was Bb1801, which killed 100% of the treated insects and had a median lethal time (LT50) of 4.60 days at a concentration of 1×107 conidia/mL. Therefore, isolate Bb1801 has a great potential for sustainable control of RTB in the forest. The correlation between biological characteristics and virulence of the fungal isolates is discussed and the possibility of combination of entomopathogenic fungi with semiochemicals, as one of the promising strategy for RTB control, is considered.  相似文献   

12.
Thirteen Beauveria strains were isolated from the soil and infected insects. Among the various isolates, B2 isolate (Arachalore) showed a higher percentage of mortality against C. medinalis (73.3%) under in vitro conditions. Conidial concentration of 1 × 108 of the B2 strain registered maximum mortality of 76.7%. The least LT50 value of 4.4 days was registered in B2 isolate with the spore concentration of 1 × 108 and the LC50 value was 3.4 × 104. Beauveria strains altered the feeding behavior of C. medinalis, reduced the pupal weight, prolonged the pupation period, malformed the pupa and adult under in vitro. The efficacy of the talc-based bioformulation of Beauveria (B2) strain was tested as seed treatment + seedling dip + soil application + foliar spray against rice leaffolder under in vitro and greenhouse conditions. The percentage damage was significantly less (5.5) in B2 as compared to untreated healthy control (25.8). In addition, the same treatment increased the activities of defense-related enzymes, namely peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, chitinase, and phenolics in rice.  相似文献   

13.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

14.
Apple clearwing moth larvae, Synanthedon myopaeformis (Lepidoptera: Sesiidae) were found to be susceptible to infection by two entomopathogenic fungi: an indigenous fungus isolated from S. myopaeformis cadavers and identified as Metarhizium brunneum (Petch); and Beauveria bassiana isolate GHA. In laboratory bioassays, larvae exhibited dose related mortality after exposure to both the M. brunneum and Beauveria bassiana with 7 day LC50's of 2.9×105 and 3.4×105 spores/mL, respectively. Larval mortalities caused by the two isolates at 1×106 spores/mL were not significantly different and 73% of the M. brunneum-treated, and 76% of the B. bassiana-treated larvae were dead 7 days post treatment, with LT50's of 5.5 and 5.1 days, respectively.  相似文献   

15.
《Journal of Asia》2023,26(2):102038
Entomopathogenic fungi (EPF) are important biological control agents in pest management programs in agroecosystems against insect pests. EPF such as Beauveria bassiana (Bals.) Vuillemin and Metarhizium anisopliae (Metchn.) Sorokin produce a wide range of extracellular enzymes involved in disturbance of the first barrier in the insect cuticle comprising proteins, chitin, and lipids. Realizing relationships between the expression of these enzymes and fungal virulence might aid in development of effective mycoinsecticides. The virulence of B. bassiana (isolates TV and OZ1) and M. anisopliae (isolate CS1) were investigated on Plodia interpunctella (Hübner) larvae in this study. The third instar larvae were immersed in a suspension containing 1 × 108 conidia mL?1 of fungal conidial inoculum. The results revealed that all three fungal isolates caused mortality in larvae, but there was a considerable variation in their virulence. Total proteinase, exochitinase and lipase assays were done for these isolates. The TV isolate with the highest mortality with 41.7%, had the highest level of specific activity of exochitinase, protease, and lipase with 0.148, 0.654, and 0.190 U. mg?1 protein, respectively. In the current study, a positive correlation was determined between the virulence of fungal isolates and the activities of protease and lipase, but this link was not significant for exochitinase. Our results demonstrated that extracellular enzymes, particularly protease and lipase, may play a crucial role in the virulence of these fungal isolates against P. interpunctella larvae.  相似文献   

16.
The ability of conidia of the human pathogenic fungus Aspergillus fumigatus to kill larvae of the insect Galleria mellonella was investigated. Conidia at different stages of the germination process displayed variations in their virulence as measured using the Galleria infection model. Non-germinating (‘resting’) conidia were avirulent except when an inoculation density of 1 × 107 conidia per insect was used. Conidia that had been induced to commence the germination process by pre-culturing in growth medium for 3 h were capable of killing larvae at densities of 1 × 106 and 1 × 107 per insect. An inoculation density of 1 × 105 conidia per insect remained avirulent. Conidia in the outgrowth phase of germination (characterised as the formation of a germ tube) were the most virulent and were capable of killing 100% of larvae after 5 or 24 h when 1 × 107 or 1 × 106 conidia, that had been allowed to germinate for 24 h, were used. Examination of the response of insect haemocytes to conidia at different stages of the germination process established that haemocytes could engulf non-germinating conidia and those in the early stages of the germination process but that conidia, which had reached the outgrowth stages of germination were not phagocytosed. The results presented here indicate that haemocytes of G. mellonella are capable of phagocytosing A. fumigatus conidia less than 3.0 μm in diameter but that conidia greater than this are too large to be engulfed. The virulence of A. fumigatus in G. mellonella larvae can be ascertained within 60–90 h if infection densities of 1 × 106 or 1 × 107 activated conidia (pre-incubated for 2–3 h) per insect are employed.  相似文献   

17.
Galleria mellonella larvae are an alternative in vivo model for investigating bacterial pathogenicity. Here, we examined the pathogenicity of 71 isolates from five leading uropathogenic E. coli (UPEC) lineages using G. mellonella larvae. Larvae were challenged with a range of inoculum doses to determine the 50% lethal dose (LD50) and for analysis of survival outcome using Kaplan-Meier plots. Virulence was correlated with carriage of a panel of 29 virulence factors (VF). Larvae inoculated with ST69 and ST127 isolates (104 colony-forming units/larvae) showed significantly higher mortality rates than those infected with ST73, ST95 and ST131 isolates, killing 50% of the larvae within 24 hours. Interestingly, ST131 isolates were the least virulent. We observed that ST127 isolates are significantly associated with a higher VF-score than isolates of all other STs tested (P≤0.0001), including ST69 (P<0.02), but one ST127 isolate (strain EC18) was avirulent. Comparative genomic analyses with virulent ST127 strains revealed an IS1 mediated deletion in the O-antigen cluster in strain EC18, which is likely to explain the lack of virulence in the larvae infection model. Virulence in the larvae was not correlated with serotype or phylogenetic group. This study illustrates that G. mellonella are an excellent tool for investigation of the virulence of UPEC strains. The findings also support our suggestion that the incidence of ST127 strains should be monitored, as these isolates have not yet been widely reported, but they clearly have a pathogenic potential greater than that of more widely recognised clones, including ST73, ST95 or ST131.  相似文献   

18.
The great spruce bark beetle, Dendroctonus micans (Kugelann) (Coleoptera: Curculionidae), has been a potential threat for Turkey and the entire Eurasian spruce forests for many years. Control strategies which have been applied so far are still insufficient to prevent its damage. A previous study has shown that a Beauveria isolate (ARSEF 9271) proved to be an efficient microbial control agent against the great spruce bark beetle. In this study, this isolate was identified as B. pseudobassiana based on the partial sequence of EF1‐α and ITS sequence. A conidial suspension (1 × 108/ml) of this fungus caused 100% mortality on both larvae and adults of D. micans within 5 and 6 days, respectively. Also, it caused 100% mycosis value on both larvae and adults. Mortality values of horizontal transmission experiments between larvae and adults which were contaminated with 1 × 106/ml spore suspension at 25%, 50%, 75% and 100% rates were determined as 100% after 15 days at 20°C under the laboratory conditions. We also determined the decrease of the damage in spruce wood block (15 × 25 cm) when the contamination rate of the larvae was increased. Our results indicate that B. pseudobassiana ARSEF 9271 seems to be a very promising biocontrol agent against D. micans.  相似文献   

19.
The Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), is the major tephritid pest in Morocco. This pest survives in Moroccan forests Argania spinosa and continually invades the nearest agricultural areas. Entomopathogenic fungi are an interesting tool for fruit fly control and hold a useful alternative to conventional insecticides. However, primary selection of effective pathogens should be taken in laboratory condition prior to applying them in the field. Here, we used third late instar larvae of C. capitata to investigate the effectiveness of 15 local Beauveria bassiana isolates. Results showed that all isolates were able to infect the larval stage, producing a large mortality rate in puparia ranging from 65 to 95 % and caused significant reduction in adult emergence. The fungal treatments revealed that the mycosis occurred also in adults escaping infection as pupariating larvae. The percentage of mycosed puparia was highest in strain TAM6.2 (95 %) followed by ERS4.16 (90 %), therefore they were the most virulent. Median lethal concentration (LC50) was studied for five isolates at four concentrations ranging from 105 to 108 conidia ml?1. The results showed that the slopes of regression lines for B. bassiana ERS4.16 (slope = 0.386) and TAM6.2 (slope = 0.41) were the most important and had the lowest LC50 values (2.85 × 103 and 3.16 × 103 conidia ml?1 respectively). This investigation suggests that the soil of Argan forests contains pathogenic B. bassiana isolates and highlights for the first time their potential as biological control toward C. capitata larval stage in Morocco.  相似文献   

20.
《Journal of Asia》2022,25(1):101878
Long-term and intensive use of synthetic insecticides to control the green peach aphid, Myzus persicae (Homoptera: Aphididae) in agricultural production in the world has resulted in pest resistance and environmental pollution. The aim of the study was to develop an environmentally-friendly and effective mycoinsecticide from a local fungal isolate against M. persicae. According to the results of the screening experiments using 15 isolates (6 × Metarhizium, 5 × Beauveria, 2 × Isaria, 2 × Lecanicillium) at 1 × 107 conidia ml?1 concentrations and the dose–response experiments at 1 × 105 –1 × 109 conidia ml?1 concentrations against M. persicae nymphs, Beauveria bassiana (KTU-24) was identified as the most promising isolate. The strain KTU-24 is also had tolerance to ecological conditions such as temperature, and UV-B. KTU-24 with advantageous and superior properties was used to develop a test mycoinsecticide. Mass production of spores by KTU-24 was conducted out by liquid-state fermentation using liquid medium. Spores harvested from the sporulated biomass were used to develop an oil-based mycoinsecticide, and the product was designated as AFIDISIDAL-OD Bbas-TR61. The product had lethal effect on M. persicae nymphs at a concentration of 1 × 108 conidia ml?1 in leaf-disc (82.5%) and pot (84.33%) experiments in a climate chamber. The oil-based mycoinsecticide developed in this study could be profitable when used in aphid-IPM prgrams by reducing crop loss and synthetic pesticides use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号