首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2(-/-) mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.  相似文献   

2.
We previously reported that fibroblast growth factor-2 (FGF-2) acts not only on osteoblasts to stimulate osteoclastic bone resorption indirectly but also on mature osteoclasts directly. In this study, we investigated the mechanism of this direct action of FGF-2 on mature osteoclasts using mouse and rabbit osteoclast culture systems. FGF-2 stimulated pit formation resorbed by isolated rabbit osteoclasts moderately from low concentrations (>/=10(-12) m), whereas at high concentrations (>/=10(-9) m) it showed stimulation on pit formation resorbed by unfractionated bone cells very potently. FGF-2 (>/=10(-12) m) also increased cathepsin K and MMP-9 mRNA levels in mouse and rabbit osteoclasts. Among FGF receptors (FGFR1 to 4) only FGFR1 was detected on isolated mouse osteoclasts, whereas all FGFRs were identified on mouse osteoblasts. FGF-2 (>/=10(-12) m) up-regulated the phosphorylation of cellular proteins, including p42/p44 mitogen-activated protein (MAP) kinase, and increased the kinase activity of immunoprecipitated FGFR1 in mouse osteoclasts. The stimulation of FGF-2 on mouse and rabbit osteoclast functions was abrogated by PD-98059, a specific inhibitor of p42/p44 MAP kinase. These results strongly suggest that FGF-2 acts directly on mature osteoclasts through activation of FGFR1 and p42/p44 MAP kinase, causing the stimulation of bone resorption at physiological or pathological concentrations.  相似文献   

3.
IL-4 is an important immune cytokine that regulates bone homeostasis. We investigated the molecular mechanism of IL-4 action on bone-resorbing mature osteoclasts. Using a highly purified population of mature osteoclasts, we show that IL-4 dose-dependently inhibits receptor activator of NF-kappaB ligand (RANKL)-induced bone resorption by mature osteoclasts. We detected the existence of IL-4R mRNA in mature osteoclasts. IL-4 decreases TRAP expression without affecting multinuclearity of osteoclasts, and inhibits actin ring formation and migration of osteoclasts. Interestingly, IL-4 inhibition of bone resorption occurs through prevention of RANKL-induced nuclear translocation of p65 NF-kappaB subunit, and intracellular Ca(2+) changes. Moreover, IL-4 rapidly decreases RANKL-stimulated ionized Ca(2+) levels in the blood, and mature osteoclasts in IL-4 knockout mice are sensitive to RANKL action to induce bone resorption and hypercalcemia. Furthermore, IL-4 inhibits bone resorption and actin ring formation by human mature osteoclasts. Thus, we reveal that IL-4 acts directly on mature osteoclasts and inhibits bone resorption by inhibiting NF-kappaB and Ca(2+) signaling.  相似文献   

4.
5.
There is increasing evidence that extracellular nucleotides act on bone cells via P2 receptors. This study investigated the action of ADP and 2-methylthioADP, a potent ADP analog with selectivity for the P2Y(1) receptor, on osteoclasts, the bone-resorbing multinuclear cells. Using three different assays, we show that ADP and 2-methylthioADP at nanomolar to submicromolar levels caused up to fourfold to sixfold increases in osteoclastic bone resorption. On mature rat osteoclasts, cultured for 1 day on polished dentine disks, peak effects on resorption pit formation were observed between 20 nM and 2 microM of ADP. The same concentrations of ADP also stimulated osteoclast and resorption pit formation in 10-day mouse marrow cultures on dentine disks. In 3-day explant cultures of mouse calvarial bones, the stimulatory effect of ADP on osteoclast-mediated Ca(2+) release was greatest at 5-50 microM and equivalent to the maximal effects of prostaglandin E(2). The ADP effects were blocked in a nontoxic manner by MRS 2179, a P2Y(1) receptor antagonist. Using in situ hybridization and immunocytochemistry, we found evidence for P2Y(1) receptor expression on both osteoclasts and osteoblasts; thus, ADP could exert its actions both directly on osteoclasts and indirectly via P2Y(1) receptors on osteoblasts. As a major ATP degradation product, ADP is a novel stimulator of bone resorption that could help mediate inflammatory bone loss in vivo.  相似文献   

6.
Prostaglandin E2 (PGE2) has been proposed to be a potent stimulator of bone resorption. However, PGE2 itself has been shown to directly inhibit bone-resorbing activity of osteoclasts. We examined the role of PGE2 in the function of mouse osteoclasts formed in vitro. Bone marrow macrophage osteoclast precursors expressed PGE2 receptors EP1, EP2, EP3beta, and EP4, and the expression of EP2 and EP4 was down-regulated during osteoclastic differentiation induced by receptor activator of NF-kappaB ligand and macrophage colony-stimulating factor. In contrast, functional EP1 was continuously expressed in mature osteoclasts. PGE2 as well as calcitonin caused intracellular Ca2+ influx in osteoclasts. However, PGE2 and 17-phenyltrinol-PGE2 (an EP1 agonist) failed to inhibit actin-ring formation and pit formation by osteoclasts cultured on dentine slices. When EP4 was expressed in osteoclasts using an adenovirus carrying EP4 cDNA, both actin-ring and pit-forming activities of osteoclasts were inhibited in an infectious unit-dependent manner. Treatment of EP4-expressing osteoclasts with PGE2 further inhibited their actin-ring and pit-forming activities. Such inhibitory effects of EP4-mediated signals on osteoclast function are similar to those that are calcitonin receptor-mediated. Thus, osteoclast precursors down-regulate their own EP2 and EP4 levels during their differentiation into osteoclasts to escape inhibitory effects of PGE2 on bone resorption.  相似文献   

7.
Excessive bone-resorbing osteoclast activity during bone remodeling is a major feature of bone diseases, such as osteoporosis. Therefore, the inhibition of osteoclast formation and bone resorption can be an effective therapeutic target for various bone diseases. Gryllus biomaculatus (GB) has recently been approved as an alternative food source because of its high nutritional value and environmental sustainability. Traditionally, GB has been known to have various pharmacological properties, including antipyretic and blood pressure-lowering activity, and it has recently been reported to have various biological activities, including protective effects against inflammation, oxidative stress, insulin resistance, and alcohol-induced liver injury. However, the effect of GB on osteoclast differentiation and bone metabolism has not yet been demonstrated. In this study, we confirmed the inhibitory effect of GB extract (GBE) on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. To determine the effect of GBE on RANKL-induced osteoclast differentiation and function, we performed TRAP and F-actin staining, as well as a bone-resorbing assay. The intracellular mechanisms of GBE responsible for the regulation of osteoclastogenesis were revealed by Western blot analysis and quantitative real-time polymerase chain reaction. We investigated the relationship between GBE and expression of osteoclast-specific molecules to further elucidate the underlying mechanisms. It was found that GBE significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt, p38, JNK, and ERK, as well as Btk-PLCγ2 signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos, NFATc1, and osteoclastogenesis-specific marker genes. Additionally, GBE inhibited the formation of F-actin ring-positive osteoclasts and bone resorption activity of mature osteoclasts. Our findings suggest that GBE is a potential functional food and therapeutic candidate for bone diseases involving osteoclasts.  相似文献   

8.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   

9.
Prostaglandin (PG) E(2) promotes osteoclastic cell differentiation, but the physiological function of PGF(2alpha) remains unclear. We examined the physiological effects of PGF(2alpha) on osteoclast differentiation using a murine cell line, RAW264, and the column-purified murine bone marrow cells, both of which are differentiable into osteoclast-like multi-nuclear cells. Although PGF(2alpha) did not affect the number of differentiated osteoclasts, PGF(2alpha) reduced the bone resorption activity of osteoclasts developed from both cell types in a pit formation assay. Thus, PGF(2alpha) inhibits bone resorption without affecting the number of osteoclasts, providing a novel molecular mechanism underlying bone metabolism.  相似文献   

10.
Osteolytic bone diseases are closely linked to the over-activation of osteoclasts and enhancement of bone resorption. It has become a major health issue in orthopedic practice worldwide. Inhibition of osteoclasts is proposed to be the main treatment for osteolytic disorders. Diosmetin (DIO) is a natural flavonoid with properties of antioxidant, anti-infection, and antishock. The effect of DIO on osteoclast differentiation is poorly understood. In this study project, we found that DIO could inhibit osteoclastic formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in a dose-dependent manner. The expression of the osteoclast differentiation marker genes, cathepsin K, nuclear factor of activated T-cells 1 (NFATc1), Acp5, Ctr, Atp6v0d2, and Mmp9 were also decreased by the treatment of DIO. In addition, DIO attenuated the formation of actin ring and the ability of bone resorption. Further, the western blotting showed that DIO inhibits the phosphorylation of the mitogen-activated protein kinases signaling pathway induced by RANKL, accompanied by the downregulation of NFATc1 and c-Fos expression. We also found that DIO could reduce the accumulation of reactive oxygen species (ROS) induced by RANKL. In vivo, the study revealed that DIO can significantly reduce LPS-induced osteolysis in mice. Collectively, our study shows that DIO can inhibit osteoclast formation and activation, and could serve as a potential therapeutic drug for osteolytic bone diseases.  相似文献   

11.
12.
Recent studies suggest that vitamin D signaling regulates bone formation. However, the overall effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone turnover in vivo is still unclear. In this study, our aim was to examine the effect of 1,25(OH)2D3 on bone turnover in SAM-P/6, a hormone-independent mouse model of senile osteoporosis characterized by a decrease in bone formation. Male and female 4-mo-old SAM-P/6 mice were treated with 1,25(OH)2D3 (18 pmol/24 h) or vehicle for a period of 6 wk, and a group of age- and sex-matched nonosteoporotic animals was used as control. Bone mineral density (BMD) at the lumbar spine increased rapidly by >30 +/- 5% (P < 0.001) in 1,25(OH)2D3-treated SAM-P/6 animals, whereas BMD decreased significantly by 18 +/- 2% (P < 0.01) in vehicle-treated SAM-P/6 animals and remained stable in control animals during the same period. Static and dynamic bone histomorphometry indicated that 1,25(OH)2D3 significantly increased bone volume and other parameters of bone quality as well as subperiosteal bone formation rate compared with vehicle-treated SAM-P/6 mice. However, no effect on trabecular bone formation was observed. This was accompanied by a marked decrease in the number of osteoclasts and eroded surfaces. A significant increase in circulating bone formation markers and a decrease in bone resorption markers was also observed. Finally, bone marrow cells, obtained from 1,25(OH)2D3-treated animals and cultured in the absence of 1,25(OH)2D3, differentiated more intensely into osteoblasts compared with those derived from vehicle-treated mice cultured in the same conditions. Taken together, these findings demonstrate that 1,25(OH)2D3 acts simultaneously on bone formation and resorption to prevent the development of senile osteoporosis.  相似文献   

13.
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ~2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.  相似文献   

14.
NFATc1 has been characterized as a master regulator of nuclear factor kappaB ligand-induced osteoclast differentiation. Herein, we demonstrate a novel role for NFATc1 as a positive regulator of nuclear factor kappaB ligand-mediated osteoclast fusion as well as other fusion-inducing factors such as TNF-alpha. Exogenous overexpression of a constitutively active form of NFATc1 in bone marrow-derived monocyte/macrophage cells (BMMs) induces formation of multinucleated osteoclasts as well as the expression of fusion-mediating molecules such as the d2 isoform of vacuolar ATPase V(o) domain (Atp6v0d2) and the dendritic cell-specific transmembrane protein (DC-STAMP). Moreover, inactivation of NFATc1 by cyclosporin A treatment attenuates expression of Atp6v0d2 and DC-STAMP and subsequent fusion process of osteoclasts. We show that NFATc1 binds to the promoter regions of Atp6v0d2 and DC-STAMP in osteoclasts and directly induces their expression. Furthermore, overexpression of Atp6v0d2 and DC-STAMP rescues cell-cell fusion of preosteoclasts despite reduced NFATc1 activity. Our data indicate for the first time that the NFATc1/Atp6v0d2 and DC-STAMP signaling axis plays a key role in the osteoclast multinucleation process, which is essential for efficient bone resorption.  相似文献   

15.
Bone resorption requires the adhesion of osteoclasts to extracellular matrix (ECM) components, a process mediated by the αvβ3 integrin. Following engagement with the ECM, integrin receptors signal via multiple downstream effectors, including the integrin‐linked kinase (ILK). In order to characterize the physiological role of ILK in bone resorption, we generated mice with an osteoclast‐specific Ilk gene ablation by mating mice with a floxed Ilk allele with TRAP‐Cre transgenic mice. The TRAP‐Cre mice specifically excised floxed alleles in osteoclasts, as revealed by crossing them with the ROSA26R reporter strain. Osteoclast‐specific Ilk mutant mice appeared phenotypically normal, but histomorphometric analysis of the proximal tibia revealed an increase in bone volume and trabecular thickness. Osteoclast‐specific Ilk ablation was associated with an increase in osteoclastogenesis both in vitro and in vivo. However, the mutant osteoclasts displayed a decrease in resorption activity as assessed by reduced pit formation on dentin slices in vitro and decreased serum concentrations of the C‐terminal telopeptide of collagen in vivo. Interestingly, compound heterozygous mice in which one allele of Ilk and one allele of the β3 integrin gene were inactivated (ILK+/?; β) also had increased trabecular thickness, confirming that β3 integrin and Ilk form part of the same genetic cascade. Our results show that ILK is important for the function, but not the differentiation, of osteoclasts. J. Cell. Biochem. 110: 960–967, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

19.
There is increasing evidence that extracellular nucleotides act on bone cells via multiple P2 receptors. The naturally-occurring ligand ATP is a potent agonist at all receptor subtypes, whereas ADP and UTP only act at specific receptor subtypes. We have reported that the formation and resorptive activity of rodent osteoclasts are stimulated powerfully by both extracellular ATP and its first degradation product, ADP, the latter acting at nanomolar concentrations, probably via the P2Y1 receptor subtype. In the present study, we investigated the actions of ATP, ADP, adenosine, and UTP on osteoblastic function. In 16-21 day cultures of primary rat calvarial osteoblasts, ADP and the selective P2Y1 agonist 2-methylthioADP were without effect on bone nodule formation at concentrations between 1 and 125 microM, as was adenosine. However, UTP, a P2Y2 and P2Y4 receptor agonist, known to be without effect on osteoclast function, strongly inhibited bone nodule formation at concentrations >or= 1 microM. ATP was inhibitory at >or= 10 microM. Rat osteoblasts express P2Y2, but not P2Y4 receptor mRNA, as determined by in situ hybridization. Thus, the low-dose effects of extracellular nucleotides on bone formation and bone resorption appear to be mediated via different P2Y receptor subtypes: ADP, signalling through the P2Y1 receptor on both osteoclasts and osteoblasts, is a powerful stimulator of osteoclast formation and activity, whereas UTP, signalling via the P2Y2 receptor on osteoblasts, blocks bone formation by osteoblasts. ATP, the 'universal' agonist, can simultaneously stimulate resorption and inhibit bone formation. These findings suggest that extracellular nucleotides could function locally as important negative modulators of bone metabolism, perhaps contributing to bone loss in a number of pathological states.  相似文献   

20.
Osteoclasts resorb bone through the formation of a unique attachment structure called the sealing zone. In this study, a role for thyroid hormone receptor-interacting protein 6 (TRIP6) in sealing zone formation and osteoclast activity was examined. TRIP6 was shown to reside in the sealing zone through its association with tropomyosin 4, an actin-binding protein that regulates sealing dimensions and bone resorptive capacity. Suppression of TRIP6 in mature osteoclasts by RNA interference altered sealing zone dimensions and inhibited bone resorption, whereas overexpression of TRIP6 increased the sealing zone perimeter and enhanced bone resorption. Treatment of osteoclasts with lysophosphatidic acid (LPA), which phosphorylates TRIP6 at tyrosine 55 through a c-Src-dependent mechanism, caused increased association of TRIP6 with the sealing zone, as did overexpression of a TRIP6 cDNA bearing a phosphomimetic mutation at tyrosine 55. Further, LPA treatment caused increases in osteoclast fusion, sealing zone perimeter, and bone resorptive capacity. In contrast, overexpression of TRIP6 containing a nonphosphorylatable amino acid residue at position 55 severely diminished sealing zone formation and bone resorption and suppressed the effects of LPA on the cytoskeleton. LPA effects were mediated through its receptor isoform LPA(2), as indicated by treatments with receptor-specific agonists and antagonists. Thus, these studies suggest that TRIP6 is a critical downstream regulator of c-Src signaling and that its phosphorylation is permissive for its presence in the sealing zone where it plays a positive role in osteoclast bone resorptive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号